177 research outputs found

    Euler integral as a source of chaos in the three–body problem

    Get PDF
    In this paper we address, from a purely numerical point of view, the question, raised in Pinzari (2019), Pinzari (2020), and partly considered in Pinzari (2020), Di Ruzza et al. (2020), Chen and Pinzari (2021), whether a certain function, referred to as “Euler Integral”, is a quasi-integral along the trajectories of the three-body problem. Differently from our previous investigations, here we focus on the region of the “unperturbed separatrix”, which turns to be complicated by a collision singularity. Concretely, we reduce the Hamiltonian to two degrees of freedom and, after fixing some energy level, we discuss in detail the resulting three-dimensional phase space around an elliptic and an hyperbolic periodic orbit. After measuring the strength of variation of the Euler Integral (which are in fact small), we detect the existence of chaos closely to the unperturbed separatrix. The latter result is obtained through a careful use of the machinery of covering relations, developed in Gierzkiewicz and Zgliczyński (2019), Zgliczynski and Gidea (2004), Wilczak and Zgliczynski (2003)

    Distribution patterns of fungi and bacteria in saline soils

    Get PDF
    Saline soils are environments characterized by uneven temporal and spatial water distribution and localized high concentrations of salts. Spatial distribution patterns of fungi and bacteria in saline soils, and the link between microbial community dynamics and salts accumulation are critical issues throughout the world (Ettema, Wardle 2002). This study was focused on spatial distribution patterns of soil fungi and bacteria in a saline soil located in Piana del Signore (Gela, Italy) where some ecological variables acted as shaping factors in aboveground and belowground communities distribution. Bacterial, archaeal, and fungal communities diversity and distribution in ten soil sites (A horizons, 0-10cm), were characterized by 16S rDNA genes with T-RFLP method. Pyrosequencing-based analysis of the V2-V3 16S rRNA gene region was performed to characterize the sites on the basis of bacterial groups distribution, diversity and assemblage. To better investigate the ecological niches of some of the main culturable species of this environment, it was carried out the isolation and identification of the fungal flora from soil, using Warcup plating within two different salt concentrations (NaCl 5% and 15%), combined with a metabolic screening of some representative isolates (Di Lonardo et al., 2013). A natural gradient of soil salinity shaped the distribution of microbial species in the environment. The different concentration of salt (NaCl), and calcium sulfate (Ca2SO4) in soil influenced the structure and distribution of the microbial communities even when comparing neighboring areas within a 50 m scale. Some bacterial phyla, together with some fungal species, appeared spread in the whole area, independently of the salinity gradient, thus highlighting the presence of organisms with a very different survival strategy in such an extreme environment. In conclusion, the organization and diversity of microbial taxa at a spatial scale reflected the scales of heterogeneity of physical and chemical properties of the habitat under investigation

    Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil?

    Get PDF
    In this study, the evaluation of soil characteristics was coupled with a pyrosequencing analysis of the V2-V3 16S rRNA gene region in order to investigate the bacterial community structure and diversity in the A horizon of a natural saline soil located in Sicily (Italy). The main aim of the research was to assess the organisation and diversity of microbial taxa using a spatial scale that revealed physical and chemical heterogeneity of the habitat under investigation. The results provided information on the type of distribution of different bacterial groups as a function of spatial gradients of soil salinity and pH. The analysis of bacterial 16S rRNA showed differences in bacterial composition and diversity due to a variable salt oncentration in the soil. The bacterial community showed a statistically significant spatial variability. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient. It emerged therefore that a patchy saline soil can not contain just a single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters. Sequences have been deposited to the SRA database and can be accessed on ID Project PRJNA241061

    A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    Get PDF
    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants\u2019 growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical components in the surface of that peculiar habitat was investigated to evaluate the organization and diversity of the phototrophic and heterotrophic microorganisms. Sixteen soil samples from A horizons were collected according to a random sampling scheme. Bacterial and archaeal communities were characterized by their 16S rDNA genes with T-RFLP method. A total of 92 genera were identified from the 16S pyrosequencing analysis suggesting that cyanobacteria and communities of sulfur bacteria might directly or indirectly promote the formation of protective envelope. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient, while other groups showed a distribution linked to very compartmentalised soil properties, such as the presence of saline crusts in the soil surface. Results show that saline soils couldn\u2019t contain just one single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters having great importance for the maintenance of the overall homeostasis

    Aspects of the planetary Birkhoff normal form

    Full text link
    The discovery in [G. Pinzari. PhD thesis. Univ. Roma Tre. 2009], [L. Chierchia and G. Pinzari, Invent. Math. 2011] of the Birkhoff normal form for the planetary many--body problem opened new insights and hopes for the comprehension of the dynamics of this problem. Remarkably, it allowed to give a {\sl direct} proof of the celebrated Arnold's Theorem [V. I. Arnold. Uspehi Math. Nauk. 1963] on the stability of planetary motions. In this paper, using a "ad hoc" set of symplectic variables, we develop an asymptotic formula for this normal form that may turn to be useful in applications. As an example, we provide two very simple applications to the three-body problem: we prove a conjecture by [V. I. Arnold. cit] on the "Kolmogorov set"of this problem and, using Nehoro{\v{s}}ev Theory [Nehoro{\v{s}}ev. Uspehi Math. Nauk. 1977], we prove, in the planar case, stability of all planetary actions over exponentially-long times, provided mean--motion resonances are excluded. We also briefly discuss perspectives and problems for full generalization of the results in the paper.Comment: 44 pages. Keywords: Averaging Theory, Birkhoff normal form, Nehoro{\v{s}}ev Theory, Planetary many--body problem, Arnold's Theorem on the stability of planetary motions, Properly--degenerate kam Theory, steepness. Revised version, including Reviewer's comments. Typos correcte

    Wettability Modification of Nanomaterials by Low-Energy Electron Flux

    Get PDF
    Controllable modification of surface free energy and related properties (wettability, hygroscopicity, agglomeration, etc.) of powders allows both understanding of fine physical mechanism acting on nanoparticle surfaces and improvement of their key characteristics in a number of nanotechnology applications. In this work, we report on the method we developed for electron-induced surface energy and modification of basic, related properties of powders of quite different physical origins such as diamond and ZnO. The applied technique has afforded gradual tuning of the surface free energy, resulting in a wide range of wettability modulation. In ZnO nanomaterial, the wettability has been strongly modified, while for the diamond particles identical electron treatment leads to a weak variation of the same property. Detailed investigation into electron-modified wettability properties has been performed by the use of capillary rise method using a few probing liquids. Basic thermodynamic approaches have been applied to calculations of components of solid–liquid interaction energy. We show that defect-free, low-energy electron treatment technique strongly varies elementary interface interactions and may be used for the development of new technology in the field of nanomaterials

    Contribution of the Microbial Communities Detected on an Oil Painting on Canvas to Its Biodeterioration

    Get PDF
    In this study, we investigated the microbial community (bacteria and fungi) colonising an oil painting on canvas, which showed visible signs of biodeterioration. A combined strategy, comprising culture-dependent and -independent techniques, was selected. The results derived from the two techniques were disparate. Most of the isolated bacterial strains belonged to related species of the phylum Firmicutes, as Bacillus sp. and Paenisporosarcina sp., whereas the majority of the non-cultivable members of the bacterial community were shown to be related to species of the phylum Proteobacteria, as Stenotrophomonas sp. Fungal communities also showed discrepancies: the isolated fungal strains belonged to different genera of the order Eurotiales, as Penicillium and Eurotium, and the non-cultivable belonged to species of the order Pleosporales and Saccharomycetales. The cultivable microorganisms, which exhibited enzymatic activities related to the deterioration processes, were selected to evaluate their biodeteriorative potential on canvas paintings; namely Arthrobacter sp. as the representative bacterium and Penicillium sp. as the representative fungus. With this aim, a sample taken from the painting studied in this work was examined to determine the stratigraphic sequence of its cross-section. From this information, “mock paintings,” simulating the structure of the original painting, were prepared, inoculated with the selected bacterial and fungal strains, and subsequently examined by micro-Fourier Transform Infrared spectroscopy, in order to determine their potential susceptibility to microbial degradation. The FTIR-spectra revealed that neither Arthrobacter sp. nor Penicillium sp. alone, were able to induce chemical changes on the various materials used to prepare “mock paintings.” Only when inoculated together, could a synergistic effect on the FTIR-spectra be observed, in the form of a variation in band position on the spectrum.The FTIR analyses performed in this study were financed by the Junta de Andalucía (RNM-325 group). The molecular analyses performed in this study were financed by the Austrian Science Fund (FWF) project ‘Hertha-Firnberg T137’ and the Spanish Ministry of Science and Innovation (Project CTQ2008-06727-C03-03). G. Piñar also thanks the “Elise-Richter V194-B20” projects
    corecore