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a b s t r a c t

In this paper we address, from a purely numerical point of view, the question, raised
in Pinzari (2019), Pinzari (2020), and partly considered in Pinzari (2020), Di Ruzza et
al. (2020), Chen and Pinzari (2021), whether a certain function, referred to as ‘‘Euler
Integral’’, is a quasi-integral along the trajectories of the three-body problem. Differently
from our previous investigations, here we focus on the region of the ‘‘unperturbed
separatrix’’, which turns to be complicated by a collision singularity. Concretely, we
reduce the Hamiltonian to two degrees of freedom and, after fixing some energy level,
we discuss in detail the resulting three-dimensional phase space around an elliptic
and an hyperbolic periodic orbit. After measuring the strength of variation of the
Euler Integral (which are in fact small), we detect the existence of chaos closely to
the unperturbed separatrix. The latter result is obtained through a careful use of the
machinery of covering relations, developed in Gierzkiewicz and Zgliczyński (2019),
Zgliczynski and Gidea (2004), Wilczak and Zgliczynski (2003).
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Purpose of the paper

This paper is a numerical study on the three-body problem. It is to be specified that we deal with (a suitably
implified version of) the Hamiltonian of the full three-body problem, where ‘‘full’’ is used here as opposed to the so-
alled ‘‘restricted’’ problem – maybe more known to non specialists – to which much of the arguments discussed here
lso can also be applied. The full three-body (in general, many-body) problem inherits much of its reputation – especially
n Hamiltonian mechanics – after the breakthrough paper by V. I. Arnold [1] which will be recalled below. In fact, this
aper is motivated by previous research [2–5], which here we briefly recall, in order to keep the paper self-contained.
We fix a reference frame (i, j, k) in the Euclidean space, which we identify with R3. In such a space we consider three

asses 1, µ and κ , with µ, κ < 1, interacting through gravity only. We reduce the translation symmetry relating the
ositions of two (out of three) masses to the position of the third one, as described in [6, §5]. Contrarily to the usual
ractice, we choose µ as reference mass (usually, the unit mass is chosen). With such choice, the Hamiltonian governing
he motions of the masses 1 and κ is

H3b(y′, y, x′, x) =
κ + µ

κµ

∥y∥2

2
−

κµ

∥x∥
+

µ + 1
µ

∥y′
∥
2

2
−

µ

∥x′∥
−

κ

∥x − x′∥
+

1
µ
y · y′ .

here x′
= (x′

1, x
′

2, x
′

3), x = (x1, x2, x3) are the position coordinates of 1 and k; y′
= (y′

1, y
′

2, y
′

3), y = (y1, y2, y3) are their
espective linear momenta; ∥ · ∥ denotes the Euclidean distance and, finally, the gravity constant has been conventionally
ixed to one.
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The rescaling

(y′, y) →
µ2κ2

κ + µ
(y′, y) , (x′, x) →

κ + µ

µ2κ2 (x′, x) , t →
µ3κ3

κ + µ
t

with t denoting the time) does not alter the motion equations, provided that H3b is changed to

H3b(y′, y, x′, x) =
∥y∥2

2
−

1
∥x∥

+ δ

(
∥y′

∥
2

2
−

α

∥x − x′∥
−

β

∥x′∥
+ γ y · y′

)
, (1)

ith

α :=
κ + µ

κµ(µ + 1)
, β :=

κ + µ

κ2(µ + 1)
, γ :=

1
µ + 1

, δ :=
κ(µ + 1)
κ + µ

. (2)

As only two parameters among (2) can be regarded as independent, from this point on, we choose α and β . This will
simplify later analysis (compare Eq. (10) below). We restrict our attention to the so called ‘‘planar problem’’, which
corresponds to take the respective third components of position and momentum coordinates identically vanishing:
x3 = x′

3 = y3 = y′

3 = 0. In such a case, H3b in (1) has four degrees of freedom. We now describe a procedure which
will reduce the number of degrees of freedom to two. One degree of freedom can be eliminated exploiting the ‘‘rotations
invariance’’, namely the fact that the Hamiltonian H3b remain unchanged under the group of transformations

(y′, y) → (Ry′,Ry) (x′, x) → (Rx′,Rx) (3)

where R is any constant orthogonal matrix, i.e, verifying

RRt
= I = RtR

with the superscript ‘‘t’’ denoting transpose, and I being the identity matrix. The existence of such group of diffeomor-
phisms is caused by the conservation of the components of the ‘‘angular momentum’’ vector C = (C1, C2, C3) given
by

C = x × y + x′
× y′

along the trajectories of H3b. Clearly, rotation invariance is not specific of the planar problem. In the planar case, it allows
for the reduction of one1 degree of freedom, as C has one only non-trivial coordinate C3, which, from now on, we shall
simply denote as C. One further degree of freedom can be eliminated under the assumption that the ‘‘Keplerian term’’
outside parentheses in (1), namely,

∥y∥2

2
−

1
∥x∥

(4)

takes negative values and is ‘‘leading’’ in the Hamiltonian (1). To better specify this assumption, we need to describe
canonical coordinates explicitly performing the reduction of (3) and, simultaneously, integrating (4). For the planar case,
such coordinates are easy to be produced. We proceed as follows.

On a 6-dimensional ‘‘rotation-reduced phase space’’ (that will be more precisely described in the next Section 2) we
fix coordinates

(R,G, Λ, r, g, ℓ) (5)

which equip such space with the two-form

ω = dR ∧ dr + dG ∧ dg + dΛ ∧ dℓ .

To define the coordinates (5), we note that, as long as the Hamiltonian (4) keeps to be negative, it generates motions on
ellipses. We denote as E the ellipse generated by Hamiltonian (4) for a given initial datum (y, x). Assuming E is not a
circle, we let

– R is the ‘‘radial velocity’’ of x′; i.e., the projection of the velocity y′ along the direction of x′;
– G is the Euclidean length of the angular momentum G = x × y of x;
– Λ =

√
a, where a is the semi-major axis of E;

– r is the Euclidean length of x′;
– g the angle detecting the perihelion of E;
– ℓ the ‘‘mean anomaly of x’’.

1 Incidentally, in the general case, the number of degrees of freedom is lowered by two units, due to the fact that the components of C are not
airwise commuting. See [7] for a case study.
2
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Precise formulae will be given below: compare Eq. (23). Here we only mention that, in a sense, the coordinates above are
referred to a frame ‘‘moving with x′’’, in order to obtain reduction of rotations. Using the coordinates above, and splitting
the term inside parentheses in (1) as the sum of its ℓ-average (denoted as HC ) and the zero-average part (denoted as
HC), we arrive at

H3b,C(R,G, Λ, r, g, ℓ) = −
1

2Λ2 + δ

(
HC(R,G, Λ, r, g) + H̃C(R,G, Λ, r, g, ℓ)

)
. (6)

In the notation, we have remarked that, as an effect of the reduction, the system depends parametrically on the total
angular momentum C = ∥C∥.

The Hamiltonian (6) has an involved aspect. By no means it appears as – or can be conjugated to – a standard
close-to-be-integrable system. These are systems of the form

H(I, ϕ) = h(I) + µf (I, ϕ)

where µ is a very small parameter; (I, ϕ) = (I1, . . . , In, ϕ1, . . . , ϕn) are coordinates – usually named action-angle – taking
values in V ×Tn, with V ⊂ Rn open and connected and T = R/(2πZ). We then recover such lack of structure by assigning
to each term in (6) a ‘‘relative weight’’. We make two main assumptions. The former is that the Keplerian term (4) is much
greater than the zero-average terms− 1

2Λ2

 ≫ δ ∥H̃C∥ (7)

where ∥ · ∥ is some norm on functions. Under condition (7), and provided that all the functions have a holomorphic
extension on some small complex domain, perturbation theory (see [1]) allows us to conjugate the Hamiltonian (6) to

H3b,C(R,G, Λ, r, g, ℓ) = −
1

2Λ2 + δHC(R,G, Λ, r, g) + O2(R,G, Λ, r, g, ℓ) (8)

where O2 denotes a remainder term, depending on all coordinates. Let us look at the system which is obtained when the
remainder is neglected: for such a system, the first term in (6) becomes an inessential additive term for the averaged
Hamiltonian which, without loss of generality (see next Section 2 for a discussion), we fix at

Λ = 1 . (9)

Reabsorbing the parameter δ through a change of time, we are reduced to study the 2-degrees of freedom Hamiltonian
HC, which is given by

HC(R,G, r, g) =
R2

2
+

(C − G)2

2r2
− αU(r,G, g) −

β

r
(10)

here we have assumed

G ∥ C ∥ (C − G) ∥ k (11)

o that ∥x′
× y′

∥ = ∥C − G∥ = C − G, and we have denoted as

U(r,G, g) :=
1
2π

∫ 2π

0

dℓ
∥x′ − x∥

(12)

he simply ℓ-averaged2 of the Newtonian3 potential (obviously, written using the above coordinates), which turns to be
-independent (see formulae (25) below).
In order to describe the motions we are looking for, we rewrite HC as

HC = KC(R, r) − αU(r,G, g) + K̃C(G, r) (13)

here

KC(R, r) =
R2

2
+

C2

2r2
−

β

r
, K̃C(G, r) =

G2
− 2CG
2r2

.

e look at regions of phase space where

∥KC∥ ≫ α∥U∥ ≫ ∥̃KC∥ . (14)

hich is our second assumption.

2 Here, ‘‘simply’’ is used as opposed to the more familiar ‘‘doubly’’ averaged Newtonian potential, most often encountered in the literature;
e.g. [1,7–11].
3 We call ‘‘Newtonian potential’’ the function

1
∥x − x′∥

. Note that the term γ y′
· y has zero-average (being y proportional to the ℓ-derivative of

x and y′ ℓ-independent), so it is merged in H̃ , together with the zero-average part Ũ of the Newtonian potential.
C

3
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Let us briefly comment on inequalities (7) and (14). These inequalities aim to shape the Hamiltonian (8) as a three-scales
ystem, namely, composed, at a first order of approximation, of three simpler terms of very different sizes. In particular,
nder such inequalities, one may argue that, at a first order of approximation, the motions (Λ(t), R(t),G(t), ℓ(t), r(t), g(t))

of H3b,C are as follows:

Conjecture 1.1.

– Λ(t) ∼ 1 remains almost constant and ℓ(t) ∼ t moves fast;
– the motion (R(t), r(t)) is ruled by KC;
– the motion (G(t), g(t)) is ruled by the non-autonomous Hamiltonian U(r(t), ·, ·). □

Now, the term KC is well-known. It consists of the one degree of freedom reduction of a Hamiltonian as in (4), with
a fictitious angular momentum equal to C. The coordinate r moves as the length of a vector along a conic section (which
can be an ellipse, parabola or hyperbola, according to the sign of the energy KC) according to the Law of Equal Areas. To
understand the dynamics generated by U(r, ·, ·), we need to recall a property of such a function, pointed out in [2]. First
of all, we remark that U is integrable. But the main point is that there exists a function F of two arguments such that

U(r,G, g) = F(r, E(r,G, g)) (15)

where

E(r,G, g) = G2
− r
√
1 − G2 cos g . (16)

he function E(r,G, g) above will be referred to as Euler integral, as it appears in the integration of the two-fixed centres
Hamiltonian (also known as Euler problem). By (15), the level sets of E, namely the curves

S(r, E) :=

{
(G, g) : G2

− r
√
1 − G2 cos g = E

}
(17)

are also level sets of U. On the other hand, the phase portrait of E can be studied exactly, and this has been done in [5]. We
report the main results here. We fix a reference frame with g on the first axis, G on the second one. For the coordinates
(g,G), by the periodicity of g, we consider a domain given by the rectangle [0, 2π ) × (−1, 1). Then we have three cases.

(a) 0 < r < 1. The point (0, 0) is a minimum, while there are two symmetric maxima at
(
π, ±

√
1 −

r2
4

)
and one saddle

at (π, 0). The phase portrait includes two separatrices{
S0(r) = {(G, g) : E(r,G, g) = r}

S1(r) = {(G, g) : E(r,G, g) = 1}
(18)

with S0(r) going through the saddle (π, 0) and S1(r) through ( π
2 , ±1). Rotational motions in between S0(r) and S1(r)

do exist. S0(r) delimits librations about the minimum and rotations. S1(r) delimits different librations surrounding
the maxima and the saddle and librational motions about the minimum.

(b) 1 < r < 2. The minimum (0, 0) persists, as well as the two symmetric maxima
(
π, ±

√
1 −

r2
4

)
, the saddle at

(π, 0) and the separatrices (18), with the difference, now, that S1(r) is inner with respect to S0(r), when looking
from the minima. Rotational motions disappear, as in fact S0(r) delimits librations about the maxima and librations
surrounding the maxima and the saddle, while S1(r) delimits different librations surrounding the maxima and the
saddle and librational motions about the minimum.

(c) r > 2. The saddle point and the separatrix S0(r) disappear, as and (π, 0) turns to be a maximum, while (π, 0) is
still a minimum. The phase portrait includes only the separatrix S1(r) in (18), which delimits different librational
motions about the minimum or the maximum.

he situation is represented in Fig. 2.
It is to be remarked, however, that the coordinate r stays fixed under E, while it moves under HC. Therefore,

hree-dimensional plots representing the manifolds corresponding to the ‘‘lifted level sets’’

M(E) = {(r,G, g) : E(r,G, g) = E} (19)

uch manifolds are represented in Fig. 3.
Each manifold M(E) with 0 < E < 2 has a saddle at

(rsad,Gsad, gsad) = (E, 0, π ) ∀ 0 < E < 2 . (20)

he manifolds obtained ‘‘lifting’’ along the r-direction the curves S0(r), S1(r) in (18) will be denoted as{
M0 = {(r,G, g) : E(r,G, g) = r}

M1 = {(r,G, g) : E(r,G, g) = 1}
. (21)

See Fig. 4.
Combining the phase portraits above with Conjecture 1.1, we pose the following
4
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Fig. 1. The three-body problem.

Fig. 2. Sections, at r fixed, of the level surfaces of E.

Fig. 3. Logs of the level surfaces of E in the space (r, g,G).
5
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Fig. 4. (a) and (b): The saddle point of M(E); (c): M0 (yellow) and M1 (blue).

Conjecture 1.2. For a set of parameters and in a region of phase space where conditions (7), (14) are verified,

(i) the manifolds M(E) are ‘‘approximate invariant manifolds’’ for the Hamiltonian H3b,C in (6), at least for the time that r
does not leave a fixed region (a), (b), (c) above;

(ii) the coupling between KC and U, the presence of the ‘‘disturbing term’’ K̃C and the remainder O2 in (8) are source of chaotic
dynamics for H3b,C in (6), closely to M0. □

However, our numerical explorations will only support the following assertion.

Conjecture 1.3. For a set of parameters and in a region of phase space where condition (14) is verified,

(i)’ the manifolds M(E) are ‘‘approximate invariant manifolds’’ for the Hamiltonian HC in (10), at least for the time that r
does not leave a fixed region (a), (b), (c) above;

(ii)’ the coupling between KC and U and the presence of the ‘‘disturbing term’’ K̃C are source of chaotic dynamics for HC in (10),
closely to M0. □

Note that Conjecture 1.3 is based on (14), but does not need (7). This is precisely the reason that led us to relax
Conjecture 1.2 to the form 1.3. Let us briefly comment on this.

A typical difficulty in Celestial Mechanics is represented by the lack of parameters. A famous example goes back to
V. I. Arnold, who, in the paper [1], wanted to regard the (1 + n)-body problem (in the planetary4 version) as close to n
independent Kepler Hamiltonians (4). He had at his disposal only one parameter, given by the maximum ratio µ of the
planets’ masses to the sun’s. In a very similar situation as for the Hamiltonian (6), where the Keplerian approximation
provides motions for only the (Λ, ℓ)′s coordinates, using a two-scale approximation (a scale ‘‘of order 1’’ for the motions
of the ℓ′s; a scale ‘‘of order µ’’ for the motions of the ellipses), he ingeniously found a good approximation for the motions
of all coordinates. To fulfil5 this, he required, besides the smallness of the parameter µ, an additive condition (i.e., the
smallness of eccentricities and inclinations of the planets’ instantaneous ellipses of the planets) having the rôle of pushing
away, in the Hamiltonian, remainder terms from the two leading scales terms. Now, inequalities (7) and (14) have the
precise scope of emulating Arnold’s strategy, with the difference that, in our case, they provide a three-scale system.
In particular, (7) stresses that the velocity of ℓ is much larger than the velocities of (R, r) and (G, g), in turn separated
by (14). Of course, the Hamiltonian HC has a physical meaning only whenever (7) is satisfied. However, what is, if existing,
a ‘‘natural’’ choice of parameter masses and/or of additive conditions that make (7)–(14) true does not seem immediate
to us. For this reason, we choose to investigate the motions of HC independently whether condition (7) is verified or not.
Our interest in HC is indeed precisely related to the Euler integral (16): we aim to find zones in the phase space of HC
here E affords slow variations and, simultaneously, chaos is detected. A similar point of view has been taken up, on the
ther hand, in the published papers [3,4,12].
Before switching to technical parts, we recall related works, with no aim of completeness. Chaos in many-body systems

as been widely studied in the literature [13–18]. For general information on chaotic phenomena, the reader may consult
19–21]. Closely related papers to the current one are the aforementioned [3,4,12]. Specifically, in [4] Conjecture 1.3 has
een proved in the case (c), while in [12] it has been proved in the case (a), with r ≪ 1 and for motions very close to

4 The planetary (1 + n)-body problem consists of the Newtonian attraction of 1 + n masses m0 , . . ., mn , where m1 , . . ., mn (‘‘planets’’) have
comparable sizes, but much smaller than m0 (‘‘star’’, or ‘‘sun’’).
5 The statement in [1] has been completely proved in [9]. The study has been reconsidered in [7] for open problems after [1,9].
6
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S0(r). Both such papers are rigorous proofs and are based well adapted normal form theory, so they unavoidably deal
with ideal situations, where ‘‘ideal’’ means that the estimates on parameters are far from being optimal. In [3] the case
(c) has been reconsidered from the numerical point of view and the existence of chaotic motions among librations has
been pointed out.

This paper is organised as follows.

– In Section 2 we collect useful properties for the Hamiltonian (10).
– In Section 3 we discuss conditions (7) and (14) on two concrete examples.
– In Sections 4 and 5 we focus on one of the examples and study the phase space around two orbits. In particular, we

study the variations of the function (16) around one orbit which spends much time closely to the saddle point (20)
of one of the manifolds (19).

– In Section 6 we show the existence of chaos (in fact, of symbolic dynamics) in the region of the mentioned saddle
point. This is the main result of the paper.

– In Section 7 we discuss how we control numerical errors, draw some conclusions and foresee possible future works.

2. Facts to be known

Let us consider the Hamiltonian H3b in (1), with x3 = x′

3 = y3 = y′

3 = 0. We define a canonical change of coordinates
hich reduces the invariance of H3b by rotations, via a canonical transformation

(y′, y, x′, x) ∈ R2
× R2

× R2
× R2

\ ∆ → (C,G, Λ, R, c, g, ℓ, r) ∈ R3
+

× R × T3
× R+ (22)

here

∆ =

{
x = 0

}⋃{
x′

= 0
}⋃{

x − x′
= 0

}
is the ‘‘collision set’’. To define the new coordinates at right hand side of (22), we denote as

• i =

( 1
0
0

)
, j =

( 0
1
0

)
the directions of a orthonormal frame in R2

× {0} and k = i × j (‘‘×’’ denoting, as usual,

the ‘‘skew-product’’). We assume (11).
• after fixing a set of values of (y, x) where the Kepler Hamiltonian (4) takes negative values, let E denote the elliptic

orbit with initial values (y0, x0) in such set;
• P, with ∥P∥ = 1, the direction of the perihelion of E, assuming E is not a circle;
• αw(u, v) the oriented angle from u to v relatively to the positive orientation established by w, if u, v and w ∈ R3

\{0},
with u, v ⊥ w.

Then the coordinates at the right hand side of (22) are defined via⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C = ∥x × y + x′
× y′

∥

G = ∥x × y∥

R =
y′

· x′

∥x′∥

Λ =
√
a

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c = αk(i, x′)

g = αk(x′, P)

r = ∥x′
∥

ℓ = mean anomaly of x in E

(23)

We recall that the mean anomaly of x is defined as the area of the elliptic sector spanned by x relatively to the perihelion
of E, normalised to 2π (refer to Fig. 1).

With a language which goes back to Liouville–Arnold theorem, the coordinates C, G and Λ will be called ‘‘actions’’,
for being conjugated to c, g and ℓ, which take values in T, hence, are called ‘‘angles’’. The coordinates (23) are singular
when G = Λ (corresponding to vanishing eccentricity of E. In that case, P is not defined) or r = 0 (as c is not defined),
so we should safely exclude such values from our domain. Observe however that the Hamiltonian (1) is c-independent
by its discussed SO(2) invariance, and the singularity at G = Λ could be – if needed – easily eliminated switching to
the ‘‘Poincaré’’ transformation (Λ,G, ℓ, g) → (Λ, p, λ, q) = (Λ,

√
2(Λ − G) cos g, ℓ + g, −

√
2(Λ − G) sin g). The canonical

haracter of the coordinates (23) has been discussed, in a more general setting, in [2]. Using the coordinates (23), the
amiltonian H3b turns to be c-independent, as the action C is a first integral for it. Then, we regard it as a ‘‘fixed parameter’’,
kipping it from actions. Another first integral, namely the action Λ, appears when taking the ℓ-average of (1), as discussed
n the previous section. In order to further simplify the discussion, it turns to be useful to remark the following scaling
roperty. Switching to the a-dimensional and canonical coordinates

R̂ := RΛ , Ĝ :=
G

, r̂ :=
r

, ĝ := g

Λ Λ2

7
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(possible because Λ is a ‘‘parameter’’) one has the following identities

HC,Λ(R,G, r, g) = Λ−2HĈ,1 (̂R, Ĝ, r̂, ĝ)

UΛ(r,G, g) = Λ−2U1 (̂r, Ĝ, ĝ)
EΛ(r,G, g) = Λ2E1 (̂r, Ĝ, ĝ) (24)

with Ĉ being the ratio C
Λ
. The equalities in (24) allow us to assume (9) once forever and eliminate the ‘‘hats’’ and subfixes

. As a result, HC depends on 3 parameters only, namely α, β and C, and is reduced to 2 degrees of freedom, ruled by
he coordinates (R,G, r, g). We provide the explicit expression of U, under the choice (9). Using, alternatively, the true
nomaly ν and the eccentric anomaly ξ , we have

U(r,G, g) =
G3

2π

∫ 2π

0

dν

(1 + e cos ν)
√
r2(1 + e cos ν)2 − 2G2r(1 + e cos ν) cos(g + ν) + G4

=
1
2π

∫ 2π

0

(1 − e cos ξ )dξ√
(1 − e cos ξ )2 − 2r(cos ξ − e) cos g + 2rG sin ξ sin g + r2

(25)

ith

e =

√
1 − G2

eing the eccentricity.
As a consequence of relation (15) and as E depends on g only via its cosinus while the other terms in (10) do not

epend on g, we remark the following symmetry:

roposition 2.1. The Hamiltonian (10) does not change replacing g with 2kπ − g, k ∈ Z.

In fact, this symmetry reflects in all orbits of HC; see, e.g., the orbits Γs, Γu mentioned in Section 4.
As, in our experiments, we are going to consider a global region of phase space, we need to establish the singularities

of U. Below, we shall briefly show that

Proposition 2.2 ([4,5,12]). The function U is singular if and only if 0 < r < 2 and (G, g) ∈ S0(r).

Namely, the manifold S0(r) looses its meaning of saddle separatrix in the Hamiltonian (10) (discussed in the previous
ection) to gain the title of ‘‘singular manifold’’. In [12] the rate of divergence of U has been established to be logarithmic,
ith respect to the distance from S0(r).
In this paper, we focus on a region of phase space where 0 < r < 1, so as to deal with the respective cases (a) in

Figs. 2–3. Ideally, we would be tempted to perform computations by replacing U with a polynomial

UN (r,G, g) =

N∑
n=0

Pn(G, g) · rn (26)

with sufficiently high degree N , provided to keep at a finite distance from S0(r). However, in this expansion the coefficients
Pn(G, g) are proportional to negative powers of G, as one immediately recognises from (25). This means that regions in
phase space with very small values of G would not be covered by such an approximation, while we precisely aim to look
at such regions. On the other hand, by Proposition 2.2, G = 0 is not a singularity, if g ̸= π (as (0, π ) is the only point of
S0(r) with G = 0). Therefore, instead of (26), we consider a ‘‘renormalised’’ expansion of the form

UN (r,G, g) =

N∑
n=0

Qn(r,G, g) · rn (27)

which differs from (26) by orders of r−N−1. The expansion (27) is possible because of the relation (15). Indeed, by such
relation, U depends on (G, g) only via E(r,G, g). Therefore, picking up, for any fixed level set (17) with E ≥ 0, the point
of E with coordinates (G, g) = (

√
E, π

2 ), we have the identity

F(r, E) = U
(
r,

√
E,

π

2

)
This identity reflects in the expansion (26), providing the expansion (27), with

Qn(r,G, g) = Pn
(√

E(r,G, g),
π

2

)
, ∀ (r,G, g) : E(r,G, g) ≥ 0

rom the procedural point of view, we remark that in the expansion (27) only the terms with n = 2k even survive, as (as
one readily sees using, e.g., a Legendre polynomials expansion) the function in (25) is even in r when g =

π .
2

8
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We conclude this section with the

roof of Proposition 2.2. The first expression in (25) shows, for the function under the integral, a pole of order 1
corresponding to the zero of the expression under the square root, and understood a collision between x and x′) when
he following equalities are satisfied

ν = −g mod 2π , r(1 + e cos g) = G2 (28)

nd a pole of order 2 at ν = π when G = 0 (corresponding to the zero of (1+ e cos ν) and understood a collision between
and the unit mass). Observe that the second equation in (28) is nothing else than the equation of S0(r). The singularity
t G = 0 leaves instead U perfectly regular, as the second expression in (25) gives

U(r, 0, g) =
1
2π

∫ 2π

0

(1 − cos ξ )dξ√
(1 − cos ξ )2 + 2r(1 − cos ξ ) cos g + r2

his shows that the only possibility of singularity for U(r, 0, g) is when 0 < r < 2 and g = π . But this is already counted
n S0(r). □

. Discussion of (7) and (14) on two examples

In the introduction, we mentioned that the simultaneous fulfilment of inequalities (7) and (14) does depend only by
hoice of the parameters of the system — in our case, α, β and C, but also needs a careful choice of the phase space. In
greement with the numeric nature of the paper, in this section we investigate the question on two concrete examples.
e pick two triples of values for α, β and C, and, for each triple, we consider motions of different kind. We check that,
hile the inequality (14) is met along all the orbits under examination, unfortunately, (7) is not.

xample 1

In the first example, we take6

α = 100 , β = 120 , C = 10 . (29)

n order to check (14) we consider two orbits, Γ1 and Γ2, of the Hamiltonian HC in (10) on two different energy levels,
1, H2, of HC, but with initial data (Ri,Gi, ri, gi) chosen so that the triplets (ri,Gi, gi) coincide with the saddle points (20)

of the manifolds M(Ei), with

Ei = E(ri,Gi, gi) =

⎧⎨⎩ 0.2 if i = 1

0.83̄ if i = 2
.

In fact, we take

H1 := 613.75 , Γ1 :

⎧⎪⎨⎪⎩
R1 = 0
G1 = 0
r1 = 0.2
g1 = π

, (30)

H2 := −155.025 , Γ2 :

⎧⎪⎨⎪⎩
R2 = 0
G2 = 0
r2 = 0.83̄
g2 = π

. (31)

e remark that E1 has been chosen so that KC is initially positive, while E2 has been chosen so that KC is initially negative
(in fact, at its7 minimum).

In order to check (7), we consider the orbits Γ̃1 and Γ̃2, of the whole Hamiltonian H3b,C in (6), departing from the initial
data obtained completing the respective initial values of Γ1 and Γ2 with Λi = 1 (as prescribed in (9)) and ℓi = π .

The results are plotted in Figs. 5 and 6. Fig. 5 shows that, along Γ2, KC remains ‘‘encapsulated’’ at its initial value for
uch longer a time than along Γ1, a somewhat expected fact. However, for the part of the graph represented in such

igures, relations (14) are well maintained along Γ1 and Γ2 as well. Fig. 6 clearly says that, unfortunately, the inequality
in (7) does not hold nor along Γ̃1 or along Γ̃2.

6 We recall that α, β are the two independent mass parameters and they are uniquely linked to κ, µ which turn out to be κ = 0.01787503,
µ = 0.02153618.
7 As well known, KC attains its minimum, given by −

β2

2C2
, when R = 0 and

r =
C2

β
=

100
120

= 0.83̄.
9



S. Di Ruzza and G. Pinzari Communications in Nonlinear Science and Numerical Simulation 110 (2022) 106372
Fig. 5. Graphs of the absolute values of KC (green), αU (red) and K̃C (blue) along Γ1 (left) and Γ2 (right). The purple line, representing the total
energy (10), is reported for comparison. Incidentally, plotting the total energy is a well known useful tool to check the correctness of numerical
integrations.

Fig. 6. Graphs of the absolute values of H̃C (green) and
− 1

2Λ2

 (pink) along Γ̃1 (left) and Γ̃2 (right).

Fig. 7. Orbits Γ1 (left) and Γ2 (right) in blue and the respective manifolds M(E1), M(E2) in purple.

Example 2

We choose8

α = 50 , β = 20 , C = 1.6 (32)

8 In this case κ, µ turn out to be κ = 0.06814254, µ = 0.02725702.
10



S. Di Ruzza and G. Pinzari Communications in Nonlinear Science and Numerical Simulation 110 (2022) 106372

t

a

O
i

i

s

Fig. 8. Graphs of the absolute values of KC (green), αU (red) and K̃C (blue) along Γs (left), Γ0 (centre), Γu (right). The purple line represents the
otal energy (10).

Fig. 9. Graphs of the absolute values of H̃C (green) and
− 1

2Λ2

 (pink) along Γ̃s (left), Γ̃0 (centre), Γ̃u (right).

nd we fix the energy level for the Hamiltonian (10) with the value

H = −76.887 . (33)

n such energy level, we choose three orbits, which we denote as Γs, Γ0 and Γu, respectively determined by the following
nitial data

Γs :

⎧⎪⎨⎪⎩
Rs = −11.367
Gs = 0.993
rs = 0.132
gs = 2.759

, (34)

Γ0 :

⎧⎪⎨⎪⎩
R0 = −9.075
G0 = 0.5
r0 = 0.132
g0 = π

, (35)

Γu :

⎧⎪⎨⎪⎩
Ru = 10.331
Gu = 0.718
ru = 0.132
gu = 5.699

. (36)

As in the previous example, inequality (7) is illustrated on the orbits Γ̃s, Γ̃0 and Γ̃u of the whole Hamiltonian H3b,C
n (6), departing from initial data obtained completing the respective initial data of Γs, Γ0 and Γu with Λi = 1 and ℓi = π .

The results are plotted in Figs. 8 and 9. In Fig. 8, the zones where KC and K̃C diverge correspond to the coordinate r
approaching 0. As a consequence, we have that (14) is not satisfied on the entire orbits, but only on the portion around
the maximum of |KC|, which corresponds with the zone around the minimum of |̃KC|. As in the previous example, Fig. 9
shows that the inequality in (7) is not met along any of the orbits Γ̃s, Γ̃0 and Γ̃u.

As mentioned above, notwithstanding the negative results of Figs. 6 and 9, justified by the considerations in the
introduction, from now on, we focus on the dynamical properties of the Hamiltonian HC in (10). Our goal is to check
slow variations of the Euler integral in some chosen region of phase space and co-existence of chaotic phenomena. At
this respect, we remark that, even though Fig. 5 of Example 1 is encouraging, proving existence of chaos closely to M0
along this way seems really hard. The difficulty is that, even though the initial point of Γi has been chosen precisely on the
saddle of M(Ei), and, for a long time, the orbits maintains to be very close to M(Ei), however, the coordinate r increases
uch in a way to leave the region 0 < r < 1 (hence, the region of the saddle) in a short time; see Fig. 7. For this reason,
11
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Table 1
Values of fixed points.
(Gs, gs) (0.992515, 0.878179π )

(Gu, gu) (0.717909, 1.81405π )

Table 2
Eigenvalues of fixed points (Gs, gs) and (Gu, gu).

Eigenvalue 1 Eigenvalue 2

(Gs, gs) 0.99568665 + i 0.99278032 0.99568665 − i 0.99278032
(Gu, gu) −0.051632609 −19.366447

in the rest of the paper we shall be focused on the orbits Γs and Γu in Example 2, where the motion of r is sufficiently
slow.

4. The orbits Γs and Γu

Let us consider the Hamiltonian (10), with α, β and C as in (32). We fix the value H of the energy as in (33) and we
educe the coordinate R via

R = ±

√
2
(
H − αU(r,G, g) −

(C − G)2

2r2
+

β

r

)
, (37)

ith the sign being chosen by continuity. We look at the motion of the triplet (r,G, g) in a 3-dimensional space.
We empirically find a periodic orbit of H in (10) in correspondence of the initial datum (34). We denote as Γs the

projection of such orbit in the space (r,G, g). We choose Πs as the plane orthogonal to Γs at (rs,Gs, gs). We construct a
2-dimensional map

PH,Πs : (G, g) → (G′, g′) (38)

where (G′, g′) is the first return value on Πs. By construction, (Gs, gs) is a fixed point of PH,Πs . The images of the map
PH,Πs with Πs as said are depicted in Fig. 10, left. A Newton Algorithm is used to find other fixed points, besides (Gs, gs).
Another point is actually found (Gu, gu), which (using the equation of Πs and of the energy reduction (37)) unfolds to the
quadruplet (36). Amazingly, we did not find other fixed points of PH,Πs :

Numerical Evidence 4.1. If H is as in (33) and Πs is orthogonal to Γs at (rs,Gs, gs), then (Gs, gs), (Gu, gu) are the only fixed
points of PH,Πs . □

In Table 1 we report the value of the two fixed points. This is to be compared with the situation studied in [3], where
several hyperbolic points in a chaotic region were numerically detected.

The computation of the eigenvalues of the linear part of PH,Πs at (Gs, gs) and (Gu, gu) assigns to (Gs, gs) the character
of elliptic fixed point (for having complex eigenvalues), and to (Gu, gu) the character of hyperbolic fixed point (for having
real eigenvalues, one inside, one outside the unit circle) for PH,Πs (see Table 2).

Therefore, we shall refer to the periodic orbits Γs, Γu through (rs,Gs, gs), (ru,Gu, gu) in the space (r,G, g) as ‘‘elliptic’’,
‘‘hyperbolic’’ periodic orbit, respectively. Such orbits are depicted in Fig. 10, right, where also the plane Πs is visualised.

In the next, in order to study the validity of Conjecture 1.3, (i), we study how the Euler integral changes along such
orbits. We shall see that Γs is immersed in a region of phase space close to M1 at all times, while Γu spends much time
close to M0.

Spread of E about Γ s

In the top panel of Fig. 11, the time variations of R, G, r, g along Γs are represented. In particular, g spans [0, 2π ]

while G has a very short range of variation (the relative variation changes periodically by a factor of order of 10−4, so it
turns to be quasi-constant). In the bottom panel, we have represented the motion in the planes (R, r), (G, g), (r, g) and
the variation of E along the orbit. The latter plot shows that E varies a little, taking values very close to 1. This means that
the orbit is in a zone of phase space very close to S1(r) (see (18)) with r taking the mentioned values.

In order to inspect the variations of E in a neighbourhood of Γs, we proceed as follows. We choose a grid of initial
conditions (R0,G0, r0, g0) on the same energy level (33), and verifying

(r0,G0, g0) ∈ M1 (39)

(with M1 as in (21)) and let the system evolve under HC. Then in the plane (G, g) we mark a point whenever (G, g) ∈

S(r , θ ), with S(r, E) as in (17) for the initial values in the grid. We find that
0

12
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Fig. 10. Left: the Poincaré map (38) with H in (33) and Πs orthogonal to Γs at (rs,Gs, gs). Right: spatial visualisation with Γs , Γu in blue and in
ed, respectively.

Fig. 11. Details on the orbit Γs .

umerical Evidence 4.2. The only non void level manifolds M(θ ) intersected by orbits of HC with initial data in M1 are
those with

θ ∈ [0.91, 1.01] . □ (40)

We report the results in Fig. 12 (top), with the purple curve corresponding to θ = 1 and the blue curves to different
values of θ in (40). The red point in the figure represents (Gs, gs).

We also provide a spatial visualisation, reporting in Fig. 12 (bottom) manifolds M(θ ) in (19) which are intersected by
the time evolution of initial data in M1, with θ as in (40).

Spread of E about Γ u

The time variations of the coordinates R, G, r and g along the hyperbolic periodic orbit are depicted in the upper panel
of Fig. 13. The bottom panel, from left to right, shows the hyperbolic orbit in the planes (R, r) and (G, g); the time variation
of E along the orbit compared with the variation of variable r. Due to the variation of the velocity along the orbit, E spends
most of time ‘‘close’’ to its initial value. With this we mean that, if T the period of the orbit, and T20%, T5%, T1% the time
when, respectively, the variation of E is less than 20% (straight line blue in right bottom plot in Fig. 13), less than 5%
(straight line dark-green in the same plot) and less than 1% (straight line green), the follow relations hold:

T20% = 41.5% · T , T5% = 19.4% · T , T1% = 10.9% · T .

Moreover, in Fig. 13 bottom–third from left, we note that the Euler integral E of the hyperbolic orbit reaches its minimum
Emin when r is maximum and its maximum Emax when r is minimum. Moreover, the maximum value rmax of r is slightly
less than the minimum Emin of E, as in fact

r = ϱ E , ϱ = 0.991.
max 0 min 0

13
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Fig. 12. Curves (top) S(r0, θ ) and manifolds (bottom) M(θ ) intersected by the HC evolution, with initial data (r0,G0, g0) ∈ M1 , and the curve Γs .

Fig. 13. Evolution of the periodic hyperbolic orbit. Upper from left to right, respectively, variables (R, G, r, g) versus time. Bottom from left to right:
orbit in the planes (R, r), (G, g), respectively; variation of the Euler integral (in violet) compared with variable r (in green); percentage variations of
uler integral (in blue less than 20%, in dark-green less than 5%, in green less than 1%).

n particular, E reaches its minimum along the orbit in a region of phase space which is very close to S0(rmax). Analogously
o the case of the elliptic orbit, we plot, in the plane (G, g), level curves S(rmax, ϱ · Emin) intersected by the HC-evolution

nder a grid of initial values (r0,G0, g0) ∈ M(Emin). We find that

14
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Fig. 14. Top: curves S(r0, ϱEmin) intersected by the HC evolution, with initial data (r0,G0, g0) ∈ M(Emin). Bottom: position of Γu relatively to the
manifold M(Emin).

Numerical Evidence 4.3. The only non void level manifolds M(ϱEmin) intersected by orbits of HC with initial data in M(Emin)
are those with

ϱ ∈ [0 , 3.1] . □ (41)

We report the results in Fig. 14, top. By construction, the value (marked in red) of (G, g) on Γu at the time when
E = Emin belongs to the curve (plotted in green) with ϱ = 1, while S0(rmax) is obtained for ϱ = 0.991 (plotted in purple).
In blue, we plot curves for different values of ϱ in (41). For comparison, in Fig. 14, bottom, we report the position of Γu
relatively to the manifolds M(Emin) (yellow). We note that ϱEmin with ϱ = 3.1 corresponds at E = 0.858673 which is less
than the minimum admissible value provided in Numerical Evidence 4.2.

Finally, in order to measure how the level manifolds M(E) which are ‘‘touched’’ by Γu spread under HC, we proceed
s follows. We pick a box of initial values (R0,G0, r0, g0) on the energy level (33) and (r0,G0, g0) ∈ M(Emin) and let the

system evolve under HC. We mark a point on the three-dimensional space (r,G, g) whenever the orbits intersects M(E),
ith

E ∈
{
Emin, Emid , Emax

}
(42)

here Emin, Emid, Emax are, respectively, the minimum (0.276991), middle (0.438944), maximum (0.530668) value of E
long Γu (see Fig. 13). We obtain the picture in Fig. 15, bottom, where the orange is for M(Emin), magenta is for M(Emid)
nd red for M(Emax).
In Fig. 16, Γu is plotted and we report in blue the part of the orbit such that E – along the orbit – varies less than

0% compared to its minimum value Emin, in dark-green the part with variation less than 5% and in green the part with
ariation less than 1% (compare with last plot in Fig. 13).
We conclude this section with a visualisation of the ‘‘spread of E’’ about Γs and Γu. In Fig. 17 we plot manifolds M(E)

intersected under the HC-evolution, with initial data in M(E), with E as in Fig. 12 (light blue) and (42) (orange to red).

. Neighbourhoods of Γu

In this section, we show several 2-dimensional maps associated with Γu, but constructed in different ways, and detect
haotic phenomena.
15
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a

Fig. 15. Top: details on the positions of Γu and the part of M(Emin) intersected by orbits evolving from M(Emin) under HC . Bottom: manifolds M(E)
intersected by the HC evolution, with initial data (r0,G0, g0) ∈ M(Emin), with E ∈

{
Emin, Emid , Emax

}
.

Fig. 16. Variations of Euler integral (in blue less than 20%, in dark-green less than 5%, in green less than 1%) along the orbits Γu related to M(Emin).

1. The first map is PH,Πs , in (38), defined, we recall, as the first return map on a plane Πs orthogonal to the orbit Γs
in Fig. 12 at the point (rs,Gs, gs), defined as in (34). As outlined in the Numerical Evidence 4.1, the map PH,Πs does not
show other fixed point than (Gs, gs) and (Gu, gu). We find the following

Numerical Evidence 5.1 (Transverse Homoclinic Intersection for PH,Πs ). The stable9 and unstable manifolds departing from
nd arriving at (Gu, gu) under PH,Πs have transverse intersection. □

9 We recall that local stable and unstable manifolds associated to the hyperbolic fixed point x∗ of a map P are defined as

Ws
loc =

{
x
⏐⏐⏐ ∥Pn(x) − x∗

∥ → 0, n ∈ N+ , n → ∞

}
,

Wu
loc =

{
x
⏐⏐⏐ ∥P−n(x) − x∗

∥ → 0, n ∈ N+ , n → ∞

}
.

16
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Fig. 17. Comparison between the spread of E associated to Γs (light blue) and Γu (orange to red).

Fig. 18. Plane (left) and spatial (right) visualisation of PH,Πs .

At this respect, in Fig. 18 the following objects are visible:

– the elliptic (dark-blue) and the hyperbolic (dark-red) fixed points;
– rotational tori (purple);
– chaotic motions (dotted purple);
– the transverse homoclinic intersection between the stable (blue) and unstable (red) manifolds from (Gu, gu).

2. Let Π i
u be different planes orthogonal to Γu at different points (ri,Gi, gi) of the curve. We consider first return maps

PH,Π i
u

: (G, g) → (G′, g′) (43)

long Π i
u. Incidentally, this procedure provides us with an help to control numerical errors, as we check the invariance

f the Lyapunov exponents at (Gi
∗
, gi

∗
), for different choices of Π i

u.
We denote as Π∗ the plane orthogonal to Γu at

(r∗,G∗, g∗) = (0.270, 0.346, 1.27π ) (44)

his point of Γu has been chosen for being ‘‘close’’ to M0. With this choice, we detect a homoclinic tangency and absence
f splitting:

umerical Evidence 5.2 (Quasi-Homoclinic Tangency). Consider first return maps (43) on Π i
u. As soon as ri

∗
is chosen closer

nd closer to r the stable tori zone becomes smaller and smaller. For Π i
= Π , stable motions are not numerically detected,
max u ∗

17
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Fig. 19. First return map on the plane Π∗ orthogonal to Γu at (r∗,G∗, g∗).

Fig. 20. First return maps on the planes Π i
u orthogonal to Γu at (ri,Gi, gi) ∈ Γu , for i = 1, . . . , 4 where, from upper left to bottom right, respectively,

1 = 0.13165 , r2 = 0.242432 , r3 = 0.252024 , r4 = r∗ = 0.26987 (we recall that rmax = 0.274496).

nd the unstable, stable manifolds have a homoclinic tangency at (G∗, g∗). In other words a splitting of such manifolds (which
ave the shape of S0(r∗)) is not numerically detected. □

The normalised stable and unstable eigenvectors in (G∗, g∗) are, respectively,

vs
∗

= (0.312937 , 0.949774) , vu
∗

= (0.320019 , 0.947411, )

nd the angle between them is

α = 0.0074651.

The results are visualised in Fig. 19 and 20.
3. We finally fix the plane Π∗

= {g = g∗}. The two-dimensional first return map

PH,Π∗ : (r,G) → (r′,G′) (45)

s depicted in Fig. 21. The aspect of the stable and unstable manifolds changes drastically, but homoclinic intersections
re present.
18
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t

Fig. 21. First return map on the plane Π∗
= {g = g∗}. Note the aspect of the stable and unstable manifolds in the first panel.

Fig. 22. Stable (in blue) and unstable (in red) manifolds constructed using different maps.

A comprehensive visualisation including the surface sections and returns maps herewith considered is in Fig. 22.
4. As special case of previous point, we fix the plane Π⋆

= {g = π}. Due to the geometrical shape and properties of
he curve Γu, it is not possible to fix the orthogonal planes at the points T = (G⋆, rmin, π ) and S = (G⋆, rmax, π ). For this
reason, we study the structure of the first return map on the plane Π⋆. The points T, S are both hyperbolic fixed points
depending on the orbit is run in one direction or in the opposite. We construct stable and stable manifolds for both fixed
points and we obtain a complete overlapping of the stable and unstable manifolds of each point. In Fig. 23, we can see in
red and blue the manifolds related to S (and the blue manifold is completely hidden by the red one) and in orange and
light-blue the manifolds related to T.

6. Symbolic dynamics

In this section, we discuss numerical evidence of symbolic dynamics for the map PH,Π∗ in (45), in the sense of the
following

Definition 6.1 (Symbolic Dynamics; Horseshoe).Let D ⊂ R2

f : D → R2 ,

we say that f has m-symbolic dynamics if there exist compact subsets with non-empty interior N0, N1 ⊂ D such that, for
every n ∈ N and any finite sequence (σ0, . . ., σn) of symbols σi ∈ {0 , 1} having length n + 1, one can find x0 ∈ Nσ0 such
that the orbit of x0 under f , namely, xj := f j(x0) is well defined for j = 0, . . ., nm, and xmj ∈ Nσj ∀ j = 0 , . . . , n.

1-symbolic dynamics in N0 ∪ N1 is also called horseshoe. □

Remark 6.1. Observe that m-symbolic dynamics implies p-symbolic dynamics for any p ∈ N such that m|p. So, in presence
of an horseshoe, p-symbolic dynamics holds for any p ∈ N. It is also known that a map with a horseshoe is semi-conjugated
to a shift (σ−1, σ0, σ1, . . .) → (σ−2, σ−1, σ0, . . .); see, e.g., [22].

In fact, we have the following

Numerical Evidence 6.1. The map PH,Π∗ in (45) has a 3-symbolic dynamics. Moreover, an orbit {xj}j=0 ...,3n corresponding to a
given sequence σ , . . ., σ , can be chosen to be extendible for j = 0 . . . , 3(n+1) and periodic, with period N ∈ {1 , . . . , 3(n+1)}.
0 n
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Fig. 23. First return map on the plane Π⋆; in purple we plot the orbit sections (regular orbits on the right and chaotic see in the left); in blue and
red the stable and unstable manifolds of fixed point S; in light-blue and orange the stable and unstable manifolds of fixed point T.

To understand why we assert the Numerical Evidence 6.1, we need to recall, below, the method of covering relations
eveloped in [22], and already used in [23] and, recently, in [3] (of course, the interested reader is invited to consult
he mentioned literature for more details). It is to be recalled that in [3] the method was used to find an horseshoe,
hile in this paper we obtain a weaker result (3-symbolic dynamics), seemingly due to the non-existence of heteroclinic
onnections, as per Numerical Evidence 4.1.

overing relations and symbolic dynamics

We simplify the material of [22] to the case that the dimension of the space is 2, as this is needed in our application.

efinition 6.2 (h-Sets, [22,23]). Let N ⊂ R2 be a compact set and let

cN : R2
→ R2

e an homeomorphism such that cN (N) = [−1, 1]2.

(i) The couple (N, cN ) is called a h-set; N is called support of the h-set.
(ii) Put

Nc := [−1, 1]2 , N−

c := {−1, 1} × [−1, 1] , N+

c := [−1, 1] × {−1, 1}

and

S(N)lc := (−∞, −1) × R , S(N)rc := (1, ∞) × R , N le
c = {−1} × [−1, 1] , N ri

c = {1} × [−1, 1]

The sets

N−
= c−1

N (N−

c ) , N+
= c−1

N (N+

c ) , N le
= c−1

N (N le
c ) , N ri

= c−1
N (N ri

c )

are called, respectively, the exit set and the entry set, while the sets

S(N)l := c−1
N (S(N)lc) , S(N)r = c−1

N (S(N)rc)

are called, respectively, the left side, right side, left edge, right edge of N . □

The following definition is fitted to the special case (realised in our study) that the unstable manifold has dimension
1. The simplification compared to the general definition in [22,23] is based on [22, Theorem 16].
20
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Definition 6.3 (Covering Relation, [22,23]). Let f : R2
→ R2 be a continuous map and N and M the supports of two h-sets.

e say that M f -covers N and we denote it by M
f

H⇒ N if:

(1) ∃ q0 ∈ [−1, 1] such that f (c−1
M ([−1, 1] × {q0})) ⊂ int(S(N)l

⋃
N
⋃

S(N)r );
(2) f (M)

⋂
N+

= ∅;
(3) f (M le) ⊂ S(N)l and f (Mri) ⊂ S(N)r or
(3)’ f (M le) ⊂ S(N)r and f (Mri) ⊂ S(N)l

f M = N , we say that f self-covers N .
Conditions (2) and (3) are called, respectively, exit and entry condition. □

As in [23], we write A
f

H⇒ B
g

H⇒ C , etc, . . ., if A
f

H⇒ B and B
g

H⇒ C , etc.

heorem 6.4 ([24]). Let Ni, i = 0, . . ., k, be h-sets such that N0 = Nk. Let

fi : Ni−1 → R ∀ i = 1 , . . . , k .

e a continuous map such that

N0
f1

H⇒ N1
f2

H⇒ · · ·
fk

H⇒ Nk = N0

hen there exists x0 ∈ N0 such that

(i) fi ◦ fi−1 ◦ · · · ◦ f1(x0) ∈ Ni ∀ i = 1 , . . . , k ;

(ii) fk ◦ fk−1 ◦ · · · ◦ f1(x0) = x0 .

We shall use Theorem 6.4 in the following form.

orollary 6.1. Let D ⊂ R2

f : D → R2

nd let N0, N1 be h-sets in D. Assume that there exist h-sets M (σ ,σ ′)
i , with i = 1, . . ., m − 1 and σ , σ ′

∈ {0 , 1}, such that

Nσ
f

H⇒ M (σ ,σ ′)
1

f
H⇒ M (σ ,σ ′)

2 · · ·
f

H⇒ M (σ ,σ ′)
m−1

f
H⇒ Nσ ′ ∀ σ , σ ′

∈ {0 , 1} . (46)

hen f has m-symbolic dynamics in N0 ∪ N1. In addition, an orbit xk corresponding, as in Definition 6.1, to a given sequence
0, . . ., σn, can be chosen so that it is well defined for i = 0, . . ., (n + 1)m and, moreover, x(n+1)m = x0.

roof. Let n ∈ N and (σ0, . . ., σn) a finite sequence of symbols σi ∈ {0 , 1} having length n + 1. Put:

N0
:= Nσ0

N1
:= M (σ0,σ1)

1 , . . . Nm−1
:= M (σ0,σ1)

m−1 , Nm
:= M (σ0,σ1)

m = Nσ1

Nm+1
:= M (σ1,σ2)

1 . . . N2m−1
:= M (σ1,σ2)

m−1 N2m
:= M (σ1,σ2)

m = Nσ2

...

N (n−1)m+1
:= M (σn−1,σn)

1 . . . Nnm−1
:= M (σn−1,σn)

m−1 Nnm
:= M (σn−1,σn)

m = Nσn

Nnm+1
:= M (σn,σ0)

1 . . . N (n+1)m−1
:= M (σn,σ0)

m−1 N (n+1)m
:= M (σn,σ0)

m = Nσ0

(47)

By (46), we have

N0 f
H⇒ N1 f

H⇒ · · ·
f

H⇒ N (n+1)m .

Moreover, N0 and N (n+1)m are defined in (47) so as to verify

N0
= Nσ0 = N (n+1)m (48)

(the last row of definitions in (47) has precisely the rôle of making (48) true). Applying Theorem 6.4 with

k = (n + 1)m , fi = f , Ni = N i
∀ i = 1 , . . . , (n + 1)m , N0 := N0

we infer the existence of x ∈ N0
= N such that
0 σ0
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Fig. 24. Numerical Evidence 6.2. Red represents the entry sets and their images and blue the exit sets and their images. The fixed point (r0,G0)
in (49) is marked in red.

(i) f i(x0) ∈ N i
∀ i = 1 , . . . , (n + 1)m ;

(ii) f (n+1)m(x0) = x0 .

Taking, in (i), i = m, 2m, · · · , nm, we have the thesis. □

Remark 6.2. As also remarked in [23], if A
f

H⇒ B
f

H⇒ C , not necessarily A
f 2

H⇒ C . Therefore, under conditions of
orollary 6.1, we cannot conclude that f k has an horseshoe.

ymbolic dynamics for PH,Π∗

Let us consider the map PH,Π∗ in (45). The stable and unstable eigenvectors related to DPH,Π∗ at

q0 = (r0,G0) = (0.26987, 0.345986) (49)

ave directions, respectively,

vs
= (−0.556268 , 0.831003) , vu

= (−0.998774 , 0.0495113),

nd the angle between them is α = 0.296467π . Observe that q0 is the projection of the point (44) on the plane (r,G).
e denote as N0 the parallelogram through q0 with edges parallel to vs and vu, namely:

N0 = q0 + A0v
s
+ B0v

u , (50)

here A0, B0 are the real intervals

A0 = [−0.000719075, 0.000719075] , B0 = [−0.0000400491, 0.0000400491] .

e define two analogous parallelograms:

N1 = q1 + A1̃v
s
+ B1v

u , N2 = q2 + A2v
s
+ B2v

u (51)

here{
q1 = (r1,G1) = (0.269552, 0.34598)
q2 = (r2,G2) = (0.27124, 0.343432) ,

ith

A1 = [−0.000028763, 0.000208532] , B1 = [−0.000144177, 0.00000400491] ,

A2 = [−0.000179769, 0.000107861] , B2 = [−0.00000400491, 0.000200246]

and

ṽs
= (−0.556143, 0.831003) .

Then we have the following (see Fig. 24)

Numerical Evidence 6.2.

N
PH,Π∗

H⇒ N
PH,Π∗

H⇒ N
PH,Π∗

H⇒ N
PH,Π∗

H⇒ N , N
PH,Π∗

H⇒ N .
0 0 1 2 0 2 1
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r

o

i

Fig. 25. Details on the construction of the sets (50) and (51). Light blue and orange denote, respectively, the stable and unstable manifolds. The
ight figure represents a wider region.

Fig. 26. Relative energy error in the propagation of the periodic orbit Γs versus number of its period Ts .

Splitting such relations as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N0
PH,Π∗

H⇒ N1
PH,Π∗

H⇒ N2
PH,Π∗

H⇒ N0

N0
PH,Π∗

H⇒ N1
PH,Π∗

H⇒ N2
PH,Π∗

H⇒ N1

N1
PH,Π∗

H⇒ N2
PH,Π∗

H⇒ N0
PH,Π∗

H⇒ N0

N1
PH,Π∗

H⇒ N2
PH,Π∗

H⇒ N0
PH,Π∗

H⇒ N1

and in view of Corollary 6.1, the Numerical Evidence 6.1 follows, with N0, N1, N2 as in (50), (51).
We conclude this section providing some detail on the construction of the sets (50) and (51). As highlighted in Fig. 25,

such sets are obtained inspecting the homoclinic intersections of the stable and unstable manifolds through q0.

7. Control of errors and conclusions

In this section we describe how we controlled numerical errors and draw some conclusions.
In our computations, we used a double precision. One check of errors was performed by the control of energy which,

being a first integral of motion should be constant. Its relative variation was required not to exceed 10−10, but the error we
obtain in our simulations is much smaller. For the orbits we deal with in Section 4, 5, 6 the relative error is comparable, so
we choose to show orbit Γs. In Fig. 26, it can be seen that the relative error remains less that 2.5 · 10−12 in 200 iterations
f the map (38).
As a further test, we performed onward and backward integrations of orbits of the map (38) starting with different

nitial conditions; as example cases, we show 4 orbits with the following initial conditions:⎧⎪⎨⎪⎩
R = −11.3668 , G = 0.992515 , r = 0.13165 , g = 0.878179π (blue)
R = −10.6704 , G = 0.8 , r = 0.13165 , g = π (light − blue)
R = −9.07533 , G = 0.5 , r = 0.13165 , g = π (green)
R = −8.94348 , G = 0.48 , r = 0.13165 , g = π (red)

(52)

In Fig. 27, we plot the sections map (38) of the 4 orbits with initial conditions (52). In Fig. 28, we show the errors
performed after a number of iterations onward and backward of the map (38); the 4 panels show the errors of the 4
23
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Fig. 27. Sections of map (38) of the 4 orbits starting with initial conditions (52).

Fig. 28. Onward and backwards integration of orbits of map (38) starting with initial conditions (52) (respectively, blue, light-blue, green and red):
relative errors of the coordinates (G, g) of the onward and backward integrations versus the number of iteration of the map are plotted.

orbits (respectively with the same colours) versus the number of iterations of the map (38). The number of iterations
(500) is chosen as a reference because our simulations do not exceed this number.

We are now ready for the conclusions.
In this paper, we discussed about the effects of the level sets of the function (16) on the dynamics of the Hamilto-

nian (10). Specifically, in a range where the energy of the averaged, reduced 2-degrees of freedom system (10) has three
different scales, one expects that the motions of the system obey to Conjectures 1.1 and 1.3. In particular, due to the
non-integrability of the system, chaos is expected closely to the envelope M0 in (21) of the separatrices of E. After fixing
the energy level (33), we computed a Poincaré map (38), which showed the existence of only two fixed points, having
elliptic, hyperbolic character. The level sets of E turn to vary a little along the orbit Γs generated by the elliptic fixed point,
while it varies more along the orbit Γu generated by the hyperbolic fixed point. However, it turns out that Γu spends most
of its time close to the saddle of M0, and we investigated the phase space around Γu. We used various 2-dimensional first
return maps, and we found a homoclinic tangency using one of them; some heteroclinic intersection using another one.
Applying the analysis developed in [22–24], we found 3-symbolic dynamics in the sense of Definition 6.1. Our results are
so in complete agreement with Conjecture 1.3, while, as remarked in the introduction, Conjecture 1.2 is still open.
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