716 research outputs found
Image-charge induced localization of molecular orbitals at metal-molecule interfaces: Self-consistent GW calculations
Quasiparticle (QP) wave functions, also known as Dyson orbitals, extend the
concept of single-particle states to interacting electron systems. Here we
employ many-body perturbation theory in the GW approximation to calculate the
QP wave functions for a semi-empirical model describing a -conjugated
molecular wire in contact with a metal surface. We find that image charge
effects pull the frontier molecular orbitals toward the metal surface while
orbitals with higher or lower energy are pushed away. This affects both the
size of the energetic image charge shifts and the coupling of the individual
orbitals to the metal substrate. Full diagonalization of the QP equation and,
to some extent, self-consistency in the GW self-energy, is important to
describe the effect which is not captured by standard density functional theory
or Hartree-Fock. These results should be important for the understanding and
theoretical modeling of electron transport across metal-molecule interfaces.Comment: 7 pages, 6 figure
Data Portraits and Intermediary Topics: Encouraging Exploration of Politically Diverse Profiles
In micro-blogging platforms, people connect and interact with others.
However, due to cognitive biases, they tend to interact with like-minded people
and read agreeable information only. Many efforts to make people connect with
those who think differently have not worked well. In this paper, we
hypothesize, first, that previous approaches have not worked because they have
been direct -- they have tried to explicitly connect people with those having
opposing views on sensitive issues. Second, that neither recommendation or
presentation of information by themselves are enough to encourage behavioral
change. We propose a platform that mixes a recommender algorithm and a
visualization-based user interface to explore recommendations. It recommends
politically diverse profiles in terms of distance of latent topics, and
displays those recommendations in a visual representation of each user's
personal content. We performed an "in the wild" evaluation of this platform,
and found that people explored more recommendations when using a biased
algorithm instead of ours. In line with our hypothesis, we also found that the
mixture of our recommender algorithm and our user interface, allowed
politically interested users to exhibit an unbiased exploration of the
recommended profiles. Finally, our results contribute insights in two aspects:
first, which individual differences are important when designing platforms
aimed at behavioral change; and second, which algorithms and user interfaces
should be mixed to help users avoid cognitive mechanisms that lead to biased
behavior.Comment: 12 pages, 7 figures. To be presented at ACM Intelligent User
Interfaces 201
Support Routines for In Situ Image Processing
This software consists of a set of application programs that support ground-based image processing for in situ missions. These programs represent a collection of utility routines that perform miscellaneous functions in the context of the ground data system. Each one fulfills some specific need as determined via operational experience. The most unique aspect to these programs is that they are integrated into the large, in situ image processing system via the PIG (Planetary Image Geometry) library. They work directly with space in situ data, understanding the appropriate image meta-data fields and updating them properly. The programs themselves are completely multimission; all mission dependencies are handled by PIG. This suite of programs consists of: (1)marscahv: Generates a linearized, epi-polar aligned image given a stereo pair of images. These images are optimized for 1-D stereo correlations, (2) marscheckcm: Compares the camera model in an image label with one derived via kinematics modeling on the ground, (3) marschkovl: Checks the overlaps between a list of images in order to determine which might be stereo pairs. This is useful for non-traditional stereo images like long-baseline or those from an articulating arm camera, (4) marscoordtrans: Translates mosaic coordinates from one form into another, (5) marsdispcompare: Checks a Left Right stereo disparity image against a Right Left disparity image to ensure they are consistent with each other, (6) marsdispwarp: Takes one image of a stereo pair and warps it through a disparity map to create a synthetic opposite- eye image. For example, a right eye image could be transformed to look like it was taken from the left eye via this program, (7) marsfidfinder: Finds fiducial markers in an image by projecting their approximate location and then using correlation to locate the markers to subpixel accuracy. These fiducial markets are small targets attached to the spacecraft surface. This helps verify, or improve, the pointing of in situ cameras, (8) marsinvrange: Inverse of marsrange . given a range file, re-computes an XYZ file that closely matches the original. . marsproj: Projects an XYZ coordinate through the camera model, and reports the line/sample coordinates of the point in the image, (9) marsprojfid: Given the output of marsfidfinder, projects the XYZ locations and compares them to the found locations, creating a report showing the fiducial errors in each image. marsrad: Radiometrically corrects an image, (10) marsrelabel: Updates coordinate system or camera model labels in an image, (11) marstiexyz: Given a stereo pair, allows the user to interactively pick a point in each image and reports the XYZ value corresponding to that pair of locations. marsunmosaic: Extracts a single frame from a mosaic, which will be created such that it could have been an input to the original mosaic. Useful for creating simulated input frames using different camera models than the original mosaic used, and (12) merinverter: Uses an inverse lookup table to convert 8-bit telemetered data to its 12-bit original form. Can be used in other missions despite the name
Density-matrix functional theory of the Hubbard model: An exact numerical study
A density functional theory for many-body lattice models is considered in
which the single-particle density matrix is the basic variable. Eigenvalue
equations are derived for solving Levy's constrained search of the interaction
energy functional W, which is expressed as the sum of Hartree-Fock energy and
the correlation energy E_C. Exact results are obtained for E_C of the Hubbard
model on various periodic lattices. The functional dependence of E_C is
analyzed by varying the number of sites, band filling and lattice structure.
The infinite one-dimensional chain and one-, two-, or three-dimensional finite
clusters with periodic boundary conditions are considered. The properties of
E_C are discussed in the limits of weak and strong electronic correlations, as
well as in the crossover region. Using an appropriate scaling we observe a
pseudo-universal behavior which suggests that the correlation energy of
extended systems could be obtained quite accurately from finite cluster
calculations. Finally, the behavior of E_C for repulsive (U>0) and attractive
(U<0) interactions are contrasted.Comment: Phys. Rev. B (1999), in pres
Interaction energy functional for lattice density functional theory: Applications to one-, two- and three-dimensional Hubbard models
The Hubbard model is investigated in the framework of lattice density
functional theory (LDFT). The single-particle density matrix with
respect the lattice sites is considered as the basic variable of the many-body
problem. A new approximation to the interaction-energy functional
is proposed which is based on its scaling properties and which recovers exactly
the limit of strong electron correlations at half-band filling. In this way, a
more accurate description of is obtained throughout the domain of
representability of , including the crossover from weak to strong
correlations. As examples of applications results are given for the
ground-state energy, charge-excitation gap, and charge susceptibility of the
Hubbard model in one-, two-, and three-dimensional lattices. The performance of
the method is demonstrated by comparison with available exact solutions, with
numerical calculations, and with LDFT using a simpler dimer ansatz for .
Goals and limitations of the different approximations are discussed.Comment: 25 pages and 8 figures, submitted to Phys. Rev.
Exchange Interaction in Binuclear Complexes with Rare Earth and Copper Ions: A Many-Body Model Study
We have used a many-body model Hamiltonian to study the nature of the
magnetic ground state of hetero-binuclear complexes involving rare-earth and
copper ions. We have taken into account all diagonal repulsions involving the
rare-earth 4f and 5d orbitals and the copper 3d orbital. Besides, we have
included direct exchange interaction, crystal field splitting of the rare-earth
atomic levels and spin-orbit interaction in the 4f orbitals. We have identified
the inter-orbital repulsion, U and crystal field parameter,
as the key parameters involved in controlling the type of exchange
interaction between the rare earth and copper 3d spins. We have explored
the nature of the ground state in the parameter space of U, ,
spin-orbit interaction strength and the filling n. We find
that these systems show low-spin or high-spin ground state depending on the
filling of the levels of the rare-earth ion and ground state spin is
critically dependent on U and . In case of half-filling
(Gd(III)) we find a reentrant low-spin state as U is increased, for
small values of , which explains the recently reported apparent
anomalous anti-ferromagnetic behaviour of Gd(III)-radical complexes. By varying
U we also observe a switch over in the ground state spin for other
fillings . We have introduced a spin-orbit coupling scheme which goes beyond
L-S or j-j coupling scheme and we find that spin-orbit coupling does not
significantly alter the basic picture.Comment: 22 pages, 11 ps figure
Electron correlation effects in electron-hole recombination in organic light-emitting diodes
We develop a general theory of electron--hole recombination in organic light
emitting diodes that leads to formation of emissive singlet excitons and
nonemissive triplet excitons. We briefly review other existing theories and
show how our approach is substantively different from these theories. Using an
exact time-dependent approach to the interchain/intermolecular charge-transfer
within a long-range interacting model we find that, (i) the relative yield of
the singlet exciton in polymers is considerably larger than the 25% predicted
from statistical considerations, (ii) the singlet exciton yield increases with
chain length in oligomers, and, (iii) in small molecules containing nitrogen
heteroatoms, the relative yield of the singlet exciton is considerably smaller
and may be even close to 25%. The above results are independent of whether or
not the bond-charge repulsion, X_perp, is included in the interchain part of
the Hamiltonian for the two-chain system. The larger (smaller) yield of the
singlet (triplet) exciton in carbon-based long-chain polymers is a consequence
of both its ionic (covalent) nature and smaller (larger) binding energy. In
nitrogen containing monomers, wavefunctions are closer to the noninteracting
limit, and this decreases (increases) the relative yield of the singlet
(triplet) exciton. Our results are in qualitative agreement with
electroluminescence experiments involving both molecular and polymeric light
emitters. The time-dependent approach developed here for describing
intermolecular charge-transfer processes is completely general and may be
applied to many other such processes.Comment: 19 pages, 11 figure
Recommended from our members
Discovering the Unfindable: The Tension Between Findability and Discoverability in a Bookshop Designed for Serendipity
Serendipity is a key aspect of user experience, particularly in the context of information acquisition - where it is known as information encountering. Unexpectedly encountering interesting or useful information can spark new insights while surprising and delighting. However, digital environments have been designed primarily for goal-directed seeking over loosely-directed exploration, searching over discovering. In this paper we examine a novel physical environment - a bookshop designed primarily for serendipity - for cues as to how information encountering might be helped or hindered by digital design. Naturalistic observations and interviews revealed it was almost impossible for participants to find specific books or topics other than by accident. But all unexpectedly encoun-tered interesting books, highlighting a tension between findability and discoverability. While some of the bookshop’s design features enabled information en-countering, others inhibited it. However, encountering was resilient, as it occurred despite participants finding it hard to understand the purpose of even those features that did enable it. Findings suggest the need to consider how transparent or opaque the purpose of design features should be and to balance structure and lack of it when designing digital environments for findability and discoverability
Providing awareness, explanation and control of personalized filtering in a social networking site
Social networking sites (SNSs) have applied personalized filtering to deal with overwhelmingly irrelevant social data. However, due to the focus of accuracy, the personalized filtering often leads to “the filter bubble” problem where the users can only receive information that matches their pre-stated preferences but fail to be exposed to new topics. Moreover, these SNSs are black boxes, providing no transparency for the user about how the filtering mechanism decides what is to be shown in the activity stream. As a result, the user’s usage experience and trust in the system can decline. This paper presents an interactive method to visualize the personalized filtering in SNSs. The proposed visualization helps to create awareness, explanation, and control of personalized filtering to alleviate the “filter bubble” problem and increase the users’ trust in the system. Three user evaluations are presented. The results show that users have a good understanding about the filter bubble visualization, and the visualization can increase users’ awareness of the filter bubble, understandability of the filtering mechanism and to a feeling of control over the data stream they are seeing. The intuitiveness of the design is overall good, but a context sensitive help is also preferred. Moreover, the visualization can provide users with better usage experience and increase users’ trust in the system
- …
