984 research outputs found

    Orthostasis test in the practice of the cardiologist

    Get PDF
    The orthostasis test makes it possible to evaluate neurohumoral regulation and reaction of the circulatory system and to detect changes in the function of a number of internal organs (especially the kidney). Simultaneous recording of the ECG in an orthostatic position despite nonspecificity, makes it possible to detect hidden damage (organic or metabolic) or increased sensitivity of the myocardium to stressor sympathetico-adrenal effects, stability of therapeutic effect, and the action mechanism of a number of drugs

    Interaction of strongly correlated electrons and acoustical phonons

    Get PDF
    We investigate the interaction of correlated electrons with acoustical phonons using the extended Hubbard-Holstein model in which both, the electron-phonon interaction and the on-site Coulomb repulsion are considered to be strong. The Lang-Firsov canonical transformation allows to obtain mobile polarons for which a new diagram technique and generalized Wick's theorem is used. This allows to handle the Coulomb repulsion between the electrons emerged into a sea of phonon fields (\textit{phonon clouds}). The physics of emission and absorption of the collective phonon-field mode by the polarons is discussed in detail. Moreover, we have investigated the different behavior of optical and acoustical phonon clouds when propagating through the lattice. In the strong-coupling limit of the electron-phonon interaction, and in the normal as well as in the superconducting phase, chronological thermodynamical averages of products of acoustical phonon-cloud operators can be expressed by one-cloud operator averages. While the normal one-cloud propagator has the form of a Lorentzian, the anomalous one is of Gaussian form and considerably smaller. Therefore, the anomalous electron Green's functions can be considered to be more important than corresponding polarons functions, i.e., pairing of electrons without phonon-clouds is easier to achieve than pairing of polarons with such clouds.Comment: : 28 pages, 9 figures, revtex4. Invited paper for a special issue of Low Temperature Physics dedicated to the 20th anniversary of HTS

    Photo-induced spin filtering in a double quantum dot

    Full text link
    We investigate the spin-resolved electron dynamics in a double quantum dot driven by ultrafast asymmetric electromagnetic pulses. Using a analytical model we show that applying an appropriate pulse sequence allows to control coherently the spin degree of freedom on the femtosecond time scale. It can be achieved that the spin-up state is localized in a selected quantum dot while the spin-down state remains in the other dot. We show that this photo-induced spin-dependent separation can be maintained for a desired period of time.Comment: shortened, revised version 2 article published at Appl. Phys. Let

    Diagrammatic theory for Periodic Anderson Model: Stationary property of the thermodynamic potential

    Full text link
    Diagrammatic theory for Periodic Anderson Model has been developed, supposing the Coulomb repulsion of ff- localized electrons as a main parameter of the theory. ff- electrons are strongly correlated and cc- conduction electrons are uncorrelated. Correlation function for ff- and mass operator for cc- electrons are determined. The Dyson equation for cc- and Dyson-type equation for ff- electrons are formulated for their propagators. The skeleton diagrams are defined for correlation function and thermodynamic functional. The stationary property of renormalized thermodynamic potential about the variation of the mass operator is established. The result is appropriate as for normal and as for superconducting state of the system.Comment: 12 pages, 10 figure

    Two-band superconductors: Hidden criticality deep in the superconducting state

    Full text link
    We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling γ\gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales proportionally to \gamma^(-\mu), with the Landau critical exponent \mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multi-band superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.Comment: 6 pages, 2 figures, Supplementary material included. Accepted for publication in PR

    Strong interaction of correlated electrons with phonons: Exchange of phonon clouds by polarons

    Full text link
    We investigate the interaction of strongly correlated electrons with phonons in the frame of the Hubbard-Holstein model. The electron-phonon interaction is considered to be strong and is an important parameter of the model besides the Coulomb repulsion of electrons and band filling. This interaction with the nondispersive optical phonons has been transformed to the problem of mobile polarons by using the canonical transformation of Lang and Firsov. We discuss in particular the case for which the on-site Coulomb repulsion is exactly cancelled by the phonon-mediated attractive interaction and suggest that polarons exchanging phonon clouds can lead to polaron pairing and superconductivity. It is then the frequency of the collective mode of phonon clouds being larger than the bare frequency, which determines the superconducting transition temperature.Comment: 23 pages, Submitted to Phys. Rev.

    Superconductivity in two-band systems with variable charge carrier density. The case of MgB2

    Full text link
    The theory of thermodynamic properties of two-band superconductor with reduced density charge carriers is developed on the base of phonon superconducting mechanism with strong electron-phonon interaction. This theory is adapted to describe the behavior of critical temperature Tc, energy gaps Delta1, Delta2, and the relative jump of electron specific heat (Cs - Cn)/Cn in the point T = Tc along with the variation of charge carrier density in the compound MgB2 when substitutional impurities with different valence are introduced into the system. It is shown, that according to the filling mechanism of energy bands which overlap on Fermi surface, the quantities Tc, Delta1, Delta2 decrease when this compound is doped with electrons and remain constant or weakly change when the system is doped with holes. The theory qualitatively agrees with the experimental data. Also is shown that the consideration of inter- and intraband scattering of electrons on impurity potential improves this agreement.Comment: 19 pages, 6 figures, 1 table. to be published in JETP (first number 2007

    Weak inter-band coupling in Mg10^{10}B2_{2}: a specific heat analysis

    Full text link
    The superconducting state of Mg10^{10}B2_{2} is investigated by specific heat measurements in detail. The specific heat in the normal state is analyzed using a recently developed computer code. This allows for an extraction of the electronic specific heat in the superconducting state with high accuracy and a fair determination of the main lattice features. One of the two investigated samples shows a hump in the specific heat at low temperatures within the superconducting state, accompanied by an unusual low value of the small gap, Δπ(0)=1.32meV\Delta_{\pi}(0)=1.32 meV, pointing to a very weak inter-band coupling. This sample allows for a detailed analysis of the contribution from the π\pi-band to the electronic specific heat in the superconducting state. Therefore the usual analysis method is modified, to include the individual conservation of entropy of both bands. From analyzing the deviation function D(t)D(t) of MgB2_{2}, the theoretically predicted weak inter-band coupling scenario is confirmed.Comment: major revision

    Diagrammatic theory for Anderson Impurity Model. Stationary property of the thermodynamic potential

    Full text link
    A diagrammatic theory around atomic limit is proposed for normal state of Anderson Impurity Model. The new diagram method is based on the ordinary Wick's theorem for conduction electrons and a generalized Wick's theorem for gtrongly correlated impurity electrons. This last theorem coincides with the definition of Kubo cumulants. For the mean value of the evolution operator a linked cluster theorem is proved and a Dyson's type equations for one-particle propagators are established. The main element of these equations is the correlation function which contains the spin, charge and pairing fluctuations of the system. The thermodynamic potential of the system is expressed through one-particle renormalized Green's functions and the corelation function. The stationary property of the thermodynamic potential is established with respect to the changes of correlation function.Comment: 7 pages, 6 figures, Submitted to PR

    Multi-wavelength constraints on cosmic-ray leptons in the Galaxy

    Full text link
    Cosmic rays (CRs) interact with the gas, the radiation field and the magnetic field in the Milky Way, producing diffuse emission from radio to gamma rays. Observations of this diffuse emission and comparison with detailed predictions are powerful tools to unveil the CR properties and to study CR propagation. We present various GALPROP CR propagation scenarios based on current CR measurements. The predicted synchrotron emission is compared to radio surveys, and synchrotron temperature maps from WMAP and Planck, while the predicted interstellar gamma-ray emission is compared to Fermi-LAT observations. We show how multi-wavelength observations of the Galactic diffuse emission can be used to help constrain the CR lepton spectrum and propagation. Finally we discuss how radio and microwave data could be used in understanding the diffuse Galactic gamma-ray emission observed with Fermi-LAT, especially at low energies.Comment: 8 pages, 5 figures; in Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague (The Netherlands); Oral contributio
    corecore