587 research outputs found

    Three Millisecond Pulsars in FERMI LAT Unassociated Bright Sources

    Full text link
    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<=2 kpc) millisecond pulsars. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power-law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of ~10^{30-31} erg/s are typical of the rare radio MSPs seen in X-rays.Comment: Accepted for publication in ApJ Letter

    Eight gamma-ray pulsars discovered in blind frequency searches of Fermi LAT data

    Full text link
    We report the discovery of eight gamma-ray pulsars in blind frequency searches using the LAT, onboard the Fermi Gamma-ray Space Telescope. Five of the eight pulsars are young (tau_c10^36 erg/s), and located within the Galactic plane (|b|<3 deg). The remaining three are older, less energetic, and located off the plane. Five pulsars are associated with sources included in the LAT bright gamma-ray source list, but only one, PSR J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the smallest characteristic age (tau_c=4.6 kyr) and is the most energetic (Edot=1.1E37 erg/s) of all gamma-ray pulsars discovered so far in blind searches. PSRs J1957+5033 and J2055+25 have the largest characteristic ages (tau_c~1 Myr) and are the least energetic (Edot~5E33 erg/s) of the newly-discovered pulsars. We present the timing models, light curves, and detailed spectral parameters of the new pulsars. We used recent XMM observations to identify the counterpart of PSR J2055+25 as XMMU J205549.4+253959. In addition, publicly available archival Chandra X-ray data allowed us to identify the likely counterpart of PSR J1023-5746 as a faint, highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption indicates that this could be among the most distant gamma-ray pulsars detected so far. PSR J1023-5746 is positionally coincident with the TeV source HESS J1023-575, located near the young stellar cluster Westerlund 2, while PSR J1954+2836 is coincident with a 4.3 sigma excess reported by Milagro at a median energy of 35 TeV. Deep radio follow-up observations of the eight pulsars resulted in no detections of pulsations and upper limits comparable to the faintest known radio pulsars, indicating that these can be included among the growing population of radio-quiet pulsars in our Galaxy being uncovered by the LAT, and currently numbering more than 20.Comment: Submitted to Ap

    First Observation of the Σc+\Sigma_{c}^{*+} Baryon and a New Measurement of the Σc+\Sigma_{c}^{+} Mass

    Full text link
    Using data recorded with the CLEO II and CLEO II.V detector configurations at the Cornell Electron Storage Rings, we report the first observation and mass measurement of the Σc+\Sigma_c^{*+} charmed baryon, and an updated measurement of the mass of the Σc+\Sigma_c^+ baryon. We find M(Σc+)M(Λc+)M(\Sigma_c^{*+})-M(\Lambda_c^+)= 231.0 +- 1.1 +- 2.0 MeV, and M(Σc+)M(Λc+)M(\Sigma_c^{+})-M(\Lambda_c^+)= 166.4 +- 0.2 +- 0.3 MeV, where the errors are statistical and systematic respectively.Comment: 8 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    Full text link
    Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently, only seven were observed to pulse in gamma rays and these were all discovered at other wavelengths. The Fermi Large Area Telescope makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics and the energetics of pulsar wind nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz Parkinson, Marcus Ziegle

    Observation of New States Decaying into Λc+ππ+\Lambda_{c}^{+}\pi^{-}\pi^{+}

    Full text link
    Using 13.7 fb^{-1} of data recorded by the CLEO detector at CESR, we investigate the spectrum of charmed baryons which decay into Lambda_c^+ pi^- pi^+ and are more massive than the Lambda_{c1} baryons. We find evidence for two new states: one is broad and has an invariant mass roughly 480 MeV above that of the Lambda_c^+; the other is narrow with an invariant mass of 596 +- 1 +- 2 MeV above the Lambda_c^+ mass. These results are preliminary.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Correlated /\c-/\cbar production in e+e- annihilations at sqrt{s}~10.5 GeV

    Full text link
    Using 13.6/fb of continuum two-jet e+e- -> ccbar events collected with the CLEO detector, we have searched for baryon number correlations at the primary quark level. We have measured the likelihood for a /\c+ charmed baryon to be produced in the hemisphere opposite a /\c- relative to the likelihood for a /\c+ charmed baryon to be produced opposite an anticharmed meson Dbar; in all cases, the reconstructed hadrons must have momentum greater than 2.3 GeV/c. We find that, given a /\c- (reconstructed in five different decay modes), a /\c+ is observed in the opposite hemisphere (0.72+/-0.11)% of the time (not corrected for efficiency). By contrast, given a Dbar in one hemisphere, a /\c+ is observed in the opposite hemisphere only (0.21+/-0.02)% of the time. Normalized to the total number of either /\c- or Dbar ``tags'', it is therefore 3.52+/-0.45+/-0.42 times more likely to find a /\c+ opposite a /\c- than a Dbar meson. This enhancement is not observed in the JETSET 7.3 e+e- -> ccbar Monte Carlo simulation.Comment: 19 pages, Latex, one figure separat

    A Search for Charmless BVVB\to VV Decays

    Full text link
    We have studied two-body charmless decays of the BB meson into the final states ρ0ρ0\rho^0 \rho^0, K0ρ0K^{*0} \rho^0, K0K0K^{*0} K^{*0}, K0K0ˉK^{*0} \bar{K^{*0}}, K+ρ0K^{*+} \rho^0, K+K0ˉK^{*+} \bar{K^{*0}}, and K+KK^{*+} K^{*-} using only decay modes with charged daughter particles. Using 9.7 million BBˉB \bar{B} pairs collected with the CLEO detector, we place 90% confidence level upper limits on the branching fractions, (0.467.0)×105(0.46-7.0)\times 10^{-5}, depending on final state and polarization.Comment: 8 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    A Measurement of the Decay Asymmetry Parameters in \Xi_{c}^{0}\to \X^{-}\pi^{+}

    Full text link
    Using the CLEO II detector at the Cornell Electron Storage Ring we have measured the Ξc0\Xi_c^{0} decay asymmetry parameter in the decay Ξc0Ξπ+\Xi_c^{0} \to \Xi^{-} \pi^+. We find αΞc0αΞ=0.26±0.18(stat)0.04+0.05(syst)\alpha_{\Xi_c^{0}} \alpha_{\Xi} = 0.26 \pm 0.18{(stat)}^{+0.05}_{-0.04}{(syst)}, using the world average value of αΞ=0.456±0.014\alpha_{\Xi} = -0.456 \pm 0.014 we obtain αΞc0=0.56±0.39(stat)0.09+0.10(syst)\alpha_{\Xi_c^{0}} = -0.56 \pm 0.39{(stat)}^{+0.10}_{-0.09}{(syst)}. The physically allowed range of a decay asymmetry parameter is 1<α<+1-1<\alpha<+1. Our result prefers a negative value: αΞc0\alpha_{\Xi_c^{0}} is <0.1<0.1 at the 90% CL. The central value occupies the middle of the theoretically expected range but is not yet precise enough to choose between models.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Study of exclusive two-body B0 meson decays to charmonium

    Full text link
    We present a study of three B0 decay modes useful for time-dependent CP asymmetry measurements. From a sample of 9.7 million B meson pairs collected with the CLEO detector, we have reconstructed B0 -> J/psi K0S, B0 -> chi_c1 K0S, and B0 -> J/psi pi0 decays. The latter two decay modes have been observed for the first time. We describe a K0S -> pi0 pi0 detection technique and its application to the reconstruction of the decay B0 -> J/psi K0S. Combining the results obtained using K0S -> pi+ pi- and K0S -> pi0 pi0 decays, we determine Br(B0 -> J/psi K0) = (9.5 +- 0.8 +- 0.6)*10^-4, where the first uncertainty is statistical and the second one is systematic. We also obtain Br(B0 -> chi_c1 K0)= (3.9 +1.9/-1.3 +- 0.4)*10^-4 and Br(B0 -> J/psi pi0) = (2.5 +1.1/-0.9 +- 0.2)*10^-5.Comment: 11 pages, 2 figures, submitted to Phys. Rev.

    Measurement of the B0 and B+ meson masses from B0 -> psi(') K_S and B+ -> psi(') K+ decays

    Full text link
    Using 9.6 million B meson pairs collected with the CLEO detector, we have fully reconstructed 135 B0 -> psi(') K_S and 526 B+ -> psi(') K+ candidates with very low background. We fitted the psi(')K invariant mass distributions of these B meson candidates and measured the masses of the neutral and charged B mesons to be M(B0)=5279.1+-0.7[stat]+-0.3[syst] MeV/c^2 and M(B+)=5279.1+-0.4[stat]+-0.4[syst] MeV/c^2. The precision is a significant improvement over previous measurements.Comment: 2 typographic errors corrected; 11 pages, 2 figures; also available through http://www.lns.cornell.edu/public/CLNS/CLEO.htm
    corecore