3,506 research outputs found

    Wall influence on dynamics of a microbubble

    Full text link
    The nonlinear dynamic behaviour of microscopic bubbles near a wall is investigated. The Keller-Miksis-Parlitz equation is adopted, but modified to account for the presence of the wall. This base model describes the time evolution of the bubble surface, which is assumed to remain spherical, and accounts for the effect of acoustic radiation losses owing to liquid compressibility in the momentum conservation. Two situations are considered: the base case of an isolated bubble in an unbounded medium; and a bubble near a solid wall. In the latter case, the wall influence is modeled by including a symmetrically oscillating image bubble. The bubble dynamics is traced using a numerical solution of the model equation. Subsequently, Floquet theory is used to accurately detect the bifurcation point where bubble oscillations stop following the driving ultrasound frequency and undergo period-changing bifurcations. Of particular interest is the detection of the subcritical period tripling and quadrupling transition. The parametric bifurcation maps are obtained as functions of non-dimensional parameters representing the bubble radius, the frequency and pressure amplitude of the driving ultrasound field and the distance from the wall. It is shown that the presence of the wall generally stabilises the bubble dynamics, so that much larger values of the pressure amplitude are needed to generate nonlinear responses.Comment: 25 pages, 14 figure

    Vortex matching effect in engineered thin films of NbN

    Full text link
    We report robust vortex matching effects in antidot arrays fabricated on thin films of NbN. The near absence of hysteresis between field sweep directions indicates a negligible residual pinning in the host thin film. Owing to the very small coherence length of NbN thin films (ξ<5nm\xi < 5 nm), the observations suggests the possibility of probing physics of vortices at true nanometer length scales in suitably fabricated structures.Comment: Submitted to Appl. Phys. Let

    Microcantilever Studies of Angular Field Dependence of Vortex Dynamics in BSCCO

    Full text link
    Using a nanogram-sized single crystal of BSCCO attached to a microcantilever we demonstrate in a direct way that in magnetic fields nearly parallel to the {\it ab} plane the magnetic field penetrates the sample in the form of Josephson vortices rather than in the form of a tilted vortex lattice. We further investigate the relation between the Josephson vortices and the pancake vortices generated by the perpendicular field component.Comment: 5 pages, 8 figure

    Vortex Matter Transition in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} under Tilted Fields

    Full text link
    Vortex phase diagram under tilted fields from the cc axis in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} is studied by local magnetization hysteresis measurements using Hall probes. When the field is applied at large angles from the cc axis, an anomaly (HpH_p^\ast) other than the well-known peak effect (HpH_p) are found at fields below HpH_p. The angular dependence of the field HpH_p^\ast is nonmonotonic and clearly different from that of HpH_p and depends on the oxygen content of the crystal. The results suggest existence of a vortex matter transition under tilted fields. Possible mechanisms of the transition are discussed.Comment: Revtex, 4 pages, some corrections are adde

    liquid air energy storage as a polygeneration system to solve the unit commitment and economic dispatch problems in micro grids applications

    Get PDF
    Abstract Storage technologies play a crucial role in polygeneration plants that attempt to integrate power, thermal and cooling energy systems in order to maximize process efficiency and reduce operating cost. With the increasing penetration of renewable energy into the plant, storage technologies help to dampen the intermittency problem in their energy supply whilst at the same time perform peak shaving to reduce primary energy consumption, thus mitigating pollutant emission. Among the various storage technologies, Liquid Air Energy Storage (LAES) have gathered research interest due to its capability of simultaneously producing electrical and cooling power. Furthermore, unlike Electrochemical Energy Storage (EES) technologies, the LAES lifetime is not heavily dependent on its duty cycle, thus allowing for a calendar life twice or thrice that of EES. In this paper, the economic dispatch of an Eco-building in Singapore has been evaluated using a mixed-integer quadratic programming solver by comparing the adoption of EES and LAES within a capacity range of 300kWh-2000kWh. At the higher end of the capacity range, the LAES configuration results in a higher Net Present Value after 20 years and a shorter time period to obtain the Return of Investment compared to that of EES. At the lower capacity range, both technologies give similar financial returns. Analysis of the results show LAES to be a promising technology to compete with EES in the context of a polygeneration plant and further technology integration is discussed

    The London theory of the crossing-vortex lattice in highly anisotropic layered superconductors

    Full text link
    A novel description of Josephson vortices (JVs) crossed by the pancake vortices (PVs) is proposed on the basis of the anisotropic London theory. The field distribution of a JV and its energy have been calculated for both dense (aλJa\lambda_J) PV lattices with distance aa between PVs, and the nonlinear JV core size λJ\lambda_J. It is shown that the ``shifted'' PV lattice (PVs displaced mainly along JVs in the crossing vortex lattice structure), formed in high out-of-plane magnetic fields transforms into the PV lattice ``trapped'' by the JV sublattice at a certain field, lower than Φ0/γ2s2\Phi_0/\gamma^2s^2, where Φ0\Phi_0 is the flux quantum, γ\gamma is the anisotropy parameter and ss is the distance between CuO2_2 planes. With further decreasing BzB_z, the free energy of the crossing vortex lattice structure (PV and JV sublattices coexist separately) can exceed the free energy of the tilted lattice (common PV-JV vortex structure) in the case of γs<λab\gamma s<\lambda_{ab} with the in-plane penetration depth λab\lambda_{ab} if the low (Bx<γΦ0/λab2B_x<\gamma\Phi_0/\lambda_{ab}^2) or high (BxΦ0/γs2B_x\gtrsim \Phi_0/\gamma s^2) in-plane magnetic field is applied. It means that the crossing vortex structure is realized in the intermediate field orientations, while the tilted vortex lattice can exist if the magnetic field is aligned near the cc-axis and the abab-plane as well. In the intermediate in-plane fields γΦ0/λab2BxΦ0/γs2\gamma\Phi_0/\lambda_{ab}^2\lesssim B_x \lesssim \Phi_0/\gamma s^2, the crossing vortex structure with the ``trapped'' PV sublattice seems to settle in until the lock-in transition occurs since this structure has the lower energy with respect to the tilted vortex structure in the magnetic field H{\vec H} oriented near the abab-plane.Comment: 15 pages, 6 figures, accepted for publication in PR

    Characterization of a Plain Broadband Textile PIFA

    Get PDF
    Bandwidth characteristic of a wearable antenna is one of the major factors in determining its usability on the human body. In this work, a planar inverted-F antenna (PIFA) structure is proposed to achieve a large bandwidth to avoid serious antenna reflection coefficient detuning when placed in proximity of the body. The proposed structure is designed based on a simple structure, in order to provide practicality in application and maintain fabrication simplicity. Two different types of conductive textiles, namely Pure Copper Polyester Taffeta Fabric (PCPTF) and ShieldIt, are used in order to proof its concept, in comparison with a metallic antenna made from copper foil. The design is spaced and fabricated using a 6 mm thick fleece fabric. To cater for potential fabrication and material measurement inaccuracies, both antennas' performance are also investigated and analyzed with varying physical and material parameters. From this investigation, it is found that the proposed structure's extended bandwidth enabled the antenna to function with satisfactory on-body reflection coefficients, despite unavoidable gain and efficiency reduction
    corecore