206 research outputs found

    ABI3 ectopic expression reduces in vitro and in vivo cell growth properties while inducing senescence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mounting evidence has indicated that <it>ABI3 </it>(ABI family member 3) function as a tumor suppressor gene, although the molecular mechanism by which ABI3 acts remains largely unknown.</p> <p>Methods</p> <p>The present study investigated <it>ABI3 </it>expression in a large panel of benign and malignant thyroid tumors and explored a correlation between the expression of ABI3 and its potential partner ABI3-binding protein (ABI3BP). We next explored the biological effects of <it>ABI3 </it>ectopic expression in thyroid and colon carcinoma cell lines, in which its expression was reduced or absent.</p> <p>Results</p> <p>We not only observed that <it>ABI3 </it>expression is reduced or lost in most carcinomas but also that there is a positive correlation between <it>ABI3 </it>and <it>ABI3BP </it>expression. Ectopic expression of <it>ABI3 </it>was sufficient to lead to a lower transforming activity, reduced tumor <it>in vitro </it>growth properties, suppressed <it>in vitro </it>anchorage-independent growth and <it>in vivo </it>tumor formation while, cellular senescence increased. These responses were accompanied by the up-regulation of the cell cycle inhibitor <it>p21 </it><sup>WAF1 </sup>and reduced ERK phosphorylation and <it>E2F1 </it>expression.</p> <p>Conclusions</p> <p>Our result links <it>ABI3 </it>to the pathogenesis and progression of some cancers and suggests that ABI3 or its pathway might have interest as therapeutic target. These results also suggest that the pathways through which <it>ABI3 </it>works should be further characterized.</p

    Protein interactions with piALU RNA indicates putative participation of retroRNA in the cell cycle, DNA repair and chromatin assembly

    Get PDF
    Recent analyses suggest that transposable element-derived transcripts are processed to yield a variety of small RNA species that play critical functional roles in gene regulation and chromatin organization as well as genome stability and maintenance. Here we report a mass spectrometry analysis of an RNA-affinity complex isolation using a piRNA homologous sequence derived from Alu retrotransposal RNA. Our data point to potential roles for piALU RNAs in DNA repair, cell cycle and chromatin regulations

    Serotonergic, brain volume and attentional correlates of trait anxiety in primates.

    Get PDF
    Trait anxiety is a risk factor for the development and maintenance of affective disorders, and insights into the underlying brain mechanisms are vital for improving treatment and prevention strategies. Translational studies in non-human primates, where targeted neurochemical and genetic manipulations can be made, are critical in view of their close neuroanatomical similarity to humans in brain regions implicated in trait anxiety. Thus, we characterised the serotonergic and regional brain volume correlates of trait-like anxiety in the marmoset monkey. Low- and high-anxious animals were identified by behavioral responses to a human intruder (HI) that are known to be sensitive to anxiolytic drug treatment. Extracellular serotonin levels within the amygdala were measured with in vivo microdialysis, at baseline and in response to challenge with the selective serotonin reuptake inhibitor, citalopram. Regional brain volume was assessed by structural magnetic resonance imaging. Anxious individuals showed persistent, long-term fearful responses to both a HI and a model snake, alongside sustained attention (vigilance) to novel cues in a context associated with unpredictable threat. Neurally, high-anxious marmosets showed reduced amygdala serotonin levels, and smaller volumes in a closely connected prefrontal region, the dorsal anterior cingulate cortex. These findings highlight behavioral and neural similarities between trait-like anxiety in marmosets and humans, and set the stage for further investigation of the processes contributing to vulnerability and resilience to affective disorders.This research was supported by a Medical Research Programme Grant (G0901884) from the Medical Research Council UK (MRC) to Angela Roberts, and a PhD studentship from MRC and final-term funding from Trinity College, Cambridge, UK to Yevheniia Mikheenko.This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/npp/journal/v40/n6/full/npp2014324a.htm

    Pharmacokinetic and Pharmacodynamic Profiling of Minocycline for Injection following a Single Infusion in Critically Ill Adults in a Phase IV Open-Label Multicenter Study (ACUMIN)

    Get PDF
    Intravenous (i.v.) minocycline is increasingly used to treat infections caused by multidrug-resistant (MDR) Acinetobacter baumannii. Despite its being approved nearly 50 years ago, published information on its pharmacokinetic (PK) profile is limited. This multicenter study examined the PK and probability of pharmacokinetic-pharmacodynamic (PK-PD) target attainment profile of i.v. minocycline in critically ill patients, with suspected or documented infection with Gram-negative bacteria. The PK study population included 55 patients who received a single 200-mg i.v. dose of minocycline. Plasma PK samples were collected predose and 1, 4, 12, 24, 36, and 48 h after initiation of minocycline. Total and unbound minocycline concentrations were determined at each time point. Probabilities of achieving the PK-PD targets associated with stasis and 1-log killing (free area under the curve above the MIC [fAUC:MIC] of 12 and 18, respectively) in an immunocompetent animal pneumonia infection model of A. baumannii were evaluated. A two-compartment population PK model with zero-order i.v. input and first-order elimination, which estimated a constant fraction unbound (f(ub)) for minocycline, best characterized the total and unbound plasma minocycline concentration-time data. The only two covariates retained in the final PK model were body surface area (associated with central volume of distribution) and albumin (associated with f(ub)). In the PK-PD probability of target attainment analyses, minocycline 200 mg i.v. every 12 h (Q12H) was predicted to result in a suboptimal PK-PD profile for patients with A. baumannii infections with MIC values of >1 mg/liter. Like all PK-PD profiling studies of this nature, these findings need clinical confirmation

    Novel Primate Model of Serotonin Transporter Genetic Polymorphisms Associated with Gene Expression, Anxiety and Sensitivity to Antidepressants

    Get PDF
    This is the final version of the article. It first appeared from Nature Publishing Group via https://dx.doi.org/10.1038/npp.2016.41Genetic polymorphisms in the repeat upstream region of the serotonin transporter gene (SLC6A4) are associated with individual differences in stress reactivity, vulnerability to affective disorders and response to pharmacotherapy. However, the molecular, neurodevelopmental and psychopharmacological mechanisms underlying the link between SLC6A4 polymorphisms and the emotionally vulnerable phenotype are not fully understood. Thus, using the marmoset monkey Callithrix jacchus we characterize here a new neurobiological model to help to address these questions. We first sequenced the marmoset SLC6A4 promoter and identified a double nucleotide polymorphism (−2053AC/CT) and two single nucleotide polymorphisms (−2022C/T and −1592G/C) within the repeat upstream region. We showed their association with gene expression using in vivo quantitative PCR and with affective behavior using a primate test of anxiety (human intruder test). The low-expressing haplotype (AC/C/G) was linked with high anxiety whilst the high-expressing one (CT/T/C) was associated with an active coping strategy in response to threat. Pharmacological challenge with an acute dose of the selective serotonin reuptake inhibitor (SSRI), citalopram, revealed a genotype-dependent behavioral response. Whilst individuals homozygous for the high anxiety-related haplotype AC/C/G exhibited a dose-dependent, anxiogenic response, individuals homozygous for the low anxiety-related haplotype CT/T/C showed an opposing, dose-dependent anxiolytic effect. These findings provide a novel genetic and behavioral primate model to study the molecular, neurodevelopmental and psychopharmacological mechanisms that underlie genetic variation-associated complex behaviors, with specific implications for the understanding of normal and abnormal serotonin actions and the development of personalized pharmacological treatments for psychiatric disorders.Work was supported by an MRC Programme (ACR; G0901884) and performed within the Behavioural and Clinical Neuroscience Institute, University of Cambridge, funded jointly by the Wellcome Trust and MRC. AMS was supported by a McDonnell Foundation grant (PI’s: E. Phelps, T.W. Robbins; Co-Investigators: ACR and J. LeDoux; 22002015501) and currently supported by MRC; YS supported by the Long Term Student Support Program provided by Osaka University and the Ministry of Education, Culture, Sports, Science and Technology of Japan; HC supported by MRC Career Development Award and ACFS/MI supported by grants from the MRC and Wellcome Trust. GC supported by the Behavioural and Clinical Neuroscience Institute, Cambridge, United Kingdom. EHSS was self-funded
    • …
    corecore