620 research outputs found

    The performance of mHealth in cancer supportive care:A research agenda

    Get PDF
    Background: Since the advent of smartphones, mhealth has risen to the attention of all actors in the health care system as something that could radically change the way health care has been thought of, managed, and delivered to date. This is particularly relevant for cancer, as it is one of the leading causes of death worldwide, and for cancer supportive care (CSC) since patients and care givers have a key role in managing side effects: given adequate knowledge, they are able to expect appropriate assessments and interventions. In this scenario, mhealth has great potential for linking patients, care givers, and health care professionals, for enabling early detection and intervention, for lowering costs and achieving better quality of life. Given its great potential, it is important to evaluate the performance of mhealth. This can be considered from several perspectives, of which organizational performance is a particularly relevant dimension, since mhealth may increase the productivity of health care providers and as a result even the productivity of health care systems. Objective: This paper aims to review studies on the evaluation of the performance of mhealth, with particular focus on cancer care and cancer supportive care processes, concentrating on its contribution to organizational performance, and identifying some indications for a further research agenda. Methods: We carried out a review of literature, aimed at identifying studies related to the performance of mhealth in general or focusing on cancer care and cancer supportive care. Results: Our analysis revealed that studies are almost always based on a single dimension of performance. Any evaluations of the performance of mhealth are based on very different methods and measures, with a prevailing focus on issues linked to efficiency. This fails to consider the real contribution that mhealth can offer for improving the performance of health care providers, health care systems, and the quality of life in general

    Can stigmatizing attitudes be prevented in psychology students?

    Get PDF
    Background: Stigmatizing attitudes have been found among psychology students in many studies, and they are becoming more common with time. Aims: This study examines whether participation in clinical psychology lessons reduces levels of stigmatization in a population of psychology students and whether it leads to any change in stigmatization. Methods: The study is a pre/post evaluation of the effectiveness of clinical psychology lessons (63 hours of lectures) as a tool to fight stigma. The presence of stigmatizing attitudes was detected using the Italian version of the Attribution Questionnaire-27 (AQ-27-I). Stigmatization was described before and after the lessons with structured equation modeling (SEM). Results: Of a total of 387 students contacted, 302 (78.04%) agreed to be involved in the study, but only 266 (68.73%) completed the questionnaires at both t0 and t1. A statistically significant reduction was seen in all six scales and the total score on the AQ-27-I. The models defined by the SEM (pre- and post-intervention) showed excellent model fit indices and described different dynamics of the phenomenon of stigma. Conclusions: A cycle of clinical psychology lessons can be a useful tool for reducing stigmatizing attitudes in a population of students seeking a psychology degree

    Mitochondrial DNA and exercise: Implications for health and injuries in sports

    Get PDF
    Recently, several studies have highlighted the tight connection between mitochondria and physical activity. Mitochondrial functions are important in high-demanding metabolic activities, such as endurance sports. Moreover, regular training positively affects metabolic health by increasing mitochondrial oxidative capacity and regulating glucose metabolism. Exercise could have multiple effects, also on the mitochondrial DNA (mtDNA) and vice versa; some studies have investigated how mtDNA polymorphisms can affect the performance of general athletes and mtDNA haplogroups seem to be related to the performance of elite endurance athletes. Along with several stimuli, including pathogens, stress, trauma, and reactive oxygen species, acute and intense exercise also seem to be responsible for mtDNA release into the cytoplasm and extracellular space, leading to the activation of the innate immune response. In addition, several sports are characterized by a higher frequency of injuries, including cranial trauma, associated with neurological consequences. However, with regular exercise, circulating cell-free mtDNA levels are kept low, perhaps promoting cf-mtDNA removal, acting as a protective factor against inflammation

    Critical Strain Region Evaluation of Self-Assembled Semiconductor Quantum Dots

    Get PDF
    A novel peak finding method to map the strain from high resolution transmission electron micrographs, known as the Peak Pairs method, has been applied to In(Ga) As/AlGaAs quantum dot (QD) samples, which present stacking faults emerging from the QD edges. Moreover, strain distribution has been simulated by the finite element method applying the elastic theory on a 3D QD model. The agreement existing between determined and simulated strain values reveals that these techniques are consistent enough to qualitatively characterize the strain distribution of nanostructured materials. The correct application of both methods allows the localization of critical strain zones in semiconductor QDs, predicting the nucleation of defects, and being a very useful tool for the design of semiconductor device

    InAs/InP/InSb Nanowires as Low Capacitance n-n Heterojunction Diodes

    Get PDF
    Nanowire diodes have been realized by employing an axial heterojunction between InAs and InSb semiconductor materials. The broken-gap band alignment (type III) leads to a strong rectification effect when the current-voltage (I-V) characteristic is inspected at room temperature. The additional insertion of a narrow InP barrier reduces the thermionic contribution, which results in a net decrease of leakage current in the reverse bias with a corresponding enhanced rectification in terms of asymmetry in the I-V characteristics. The investigated diodes compare favorably with the ones realized with p-n heterostructured nanowires, making InAs/InP/InSb devices appealing candidates to be used as building blocks for nanowire-based ultrafast electronics and for the realization of photodetectors in the THz spectral range

    Molecular mechanisms of mtdna-mediated inflammation

    Get PDF
    Besides their role in cell metabolism, mitochondria display many other functions. Mitochondrial DNA (mtDNA), the own genome of the organelle, plays an important role in modulating the inflammatory immune response. When released from the mitochondrion to the cytosol, mtDNA is recognized by cGAS, a cGAMP which activates a pathway leading to enhanced expression of type I interferons, and by NLRP3 inflammasome, which promotes the activation of pro-inflammatory cytokines Interleukin-1beta and Interleukin-18. Furthermore, mtDNA can be bound by Toll-like receptor 9 in the endosome and activate a pathway that ultimately leads to the expression of pro-inflammatory cytokines. mtDNA is released in the extracellular space in different forms (free DNA, protein-bound DNA fragments) either as free circulating molecules or encapsulated in extracellular vesicles. In this review, we discussed the latest findings concerning the molecular mechanisms that regulate the release of mtDNA from mitochondria, and the mechanisms that connect mtDNA misplacement to the activation of inflammation in different pathophysiological conditions

    High performance platinum contacts on high-flux CdZnTe detectors

    Get PDF
    The need for direct X-ray detection under high photon flux with moderate or high energies (30–100 keV range) has strongly increased with the rise of the 4th Generation Synchrotron Light Sources, characterised by extremely brilliant beamlines, and of other applications such as spectral computed tomography in medicine and non-destructive tests for industry. The novel Cadmium Zinc Telluride (CZT) developed by Redlen Technologies can be considered the reference material for high-flux applications (HF-CZT). The enhanced charge transport properties of the holes allow the mitigation of the effects of radiation induced polarization phenomena, typically observed in standard CZT materials (LF-CZT) under high photon flux. However, standard LF-CZT electrical contacts led to inacceptable high dark leakage currents on HF-CZT devices. In this work, a detailed study on the characteristics of new optimized sputtered platinum electrical contacts on HF-CZT detectors is reported. The results from electrical and spectroscopic investigations, showed the best performances on HF-CZT detectors with platinum anode, coupled with both platinum or gold cathode. The morphology, structure, and composition of Pt/CZT contact have been analysed by means of Transmission Electron Microscopy (TEM) on microscopic lamellas obtained by Focused Ion Beam (FIB), highlighting the presence of CdTeO3 oxide at the metal semiconductor interface

    The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H<sub>2</sub>S) pathway against experimental osteoarthritis.

    Get PDF
    Osteoarthritis (OA) is characterized by the formation and deposition of calcium-containing crystals in joint tissues, but the underlying mechanisms are poorly understood. The gasotransmitter hydrogen sulfide (H &lt;sub&gt;2&lt;/sub&gt; S) has been implicated in mineralization but has never been studied in OA. Here, we investigated the role of the H &lt;sub&gt;2&lt;/sub&gt; S-producing enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) in cartilage calcification and OA development. 3-MST expression was analyzed in cartilage from patients with different OA degrees, and in cartilage stimulated with hydroxyapatite (HA) crystals. The modulation of 3-MST expression in vivo was studied in the meniscectomy (MNX) model of murine OA, by comparing sham-operated to MNX knee cartilage. The role of 3-MST was investigated by quantifying joint calcification and cartilage degradation in WT and 3-MST &lt;sup&gt;-/-&lt;/sup&gt; meniscectomized knees. Chondrocyte mineralization in vitro was measured in WT and 3-MST &lt;sup&gt;-/-&lt;/sup&gt; cells. Finally, the effect of oxidative stress on 3-MST expression and chondrocyte mineralization was investigated. 3-MST expression in human cartilage negatively correlated with calcification and OA severity, and diminished upon HA stimulation. In accordance, cartilage from menisectomized OA knees revealed decreased 3-MST if compared to sham-operated healthy knees. Moreover, 3-MST &lt;sup&gt;-/-&lt;/sup&gt; mice showed exacerbated joint calcification and OA severity if compared to WT mice. In vitro, genetic or pharmacologic inhibition of 3-MST in chondrocytes resulted in enhanced mineralization and IL-6 secretion. Finally, oxidative stress decreased 3-MST expression and increased chondrocyte mineralization, maybe via induction of pro-mineralizing genes. 3-MST-generated H &lt;sub&gt;2&lt;/sub&gt; S protects against joint calcification and experimental OA. Enhancing H &lt;sub&gt;2&lt;/sub&gt; S production in chondrocytes may represent a potential disease modifier to treat OA
    corecore