6,811 research outputs found

    Heat bounds and the blowtorch theorem

    Full text link
    We study driven systems with possible population inversion and we give optimal bounds on the relative occupations in terms of released heat. A precise meaning to Landauer's blowtorch theorem (1975) is obtained stating that nonequilibrium occupations are essentially modified by kinetic effects. Towards very low temperatures we apply a Freidlin-Wentzel type analysis for continuous time Markov jump processes. It leads to a definition of dominant states in terms of both heat and escape rates.Comment: 11 pages; v2: minor changes, 1 reference adde

    Enstrophy dissipation in two-dimensional turbulence

    Full text link
    Insight into the problem of two-dimensional turbulence can be obtained by an analogy with a heat conduction network. It allows the identification of an entropy function associated to the enstrophy dissipation and that fluctuates around a positive (mean) value. While the corresponding enstrophy network is highly nonlocal, the direction of the enstrophy current follows from the Second Law of Thermodynamics. An essential parameter is the ratio Tk=γk/(νk2)T_k = \gamma_k /(\nu k^2) of the intensity of driving γk>0\gamma_k>0 as a function of wavenumber kk, to the dissipation strength νk2\nu k^2, where ν\nu is the viscosity. The enstrophy current flows from higher to lower values of TkT_k, similar to a heat current from higher to lower temperature. Our probabilistic analysis of the enstrophy dissipation and the analogy with heat conduction thus complements and visualizes the more traditional spectral arguments for the direct enstrophy cascade. We also show a fluctuation symmetry in the distribution of the total entropy production which relates the probabilities of direct and inverse enstrophy cascades.Comment: 8 pages, revtex

    Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics

    Full text link
    We continue our study of the linear response of a nonequilibrium system. This Part II concentrates on models of open and driven inertial dynamics but the structure and the interpretation of the result remain unchanged: the response can be expressed as a sum of two temporal correlations in the unperturbed system, one entropic, the other frenetic. The decomposition arises from the (anti)symmetry under time-reversal on the level of the nonequilibrium action. The response formula involves a statistical averaging over explicitly known observables but, in contrast with the equilibrium situation, they depend on the model dynamics in terms of an excess in dynamical activity. As an example, the Einstein relation between mobility and diffusion constant is modified by a correlation term between the position and the momentum of the particle

    A quantum version of free energy - irreversible work relations

    Full text link
    We give a quantum version of the Jarzynski relation between the distribution of work done over a certain time-interval on a system and the difference of equilibrium free energies. The main new ingredient is the identification of work depending on the quantum history of the system and the proper definition of various quantum ensembles over which the averages should be made. We also discuss a number of different regimes that have been considered by other authors and which are unified in the present set-up. In all cases, and quantum or classical, it is a general relation between heat and time-reversal that makes the Jarzynski relation so universally valid

    Derivation of quantum work equalities using quantum Feynman-Kac formula

    Full text link
    On the basis of a quantum mechanical analogue of the famous Feynman-Kac formula and the Kolmogorov picture, we present a novel method to derive nonequilibrium work equalities for isolated quantum systems, which include the Jarzynski equality and Bochkov-Kuzovlev equality. Compared with previous methods in the literature, our method shows higher similarity in form to that deriving the classical fluctuation relations, which would give important insight when exploring new quantum fluctuation relations.Comment: 5 page

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    A meaningful expansion around detailed balance

    Full text link
    We consider Markovian dynamics modeling open mesoscopic systems which are driven away from detailed balance by a nonconservative force. A systematic expansion is obtained of the stationary distribution around an equilibrium reference, in orders of the nonequilibrium forcing. The first order around equilibrium has been known since the work of McLennan (1959), and involves the transient irreversible entropy flux. The expansion generalizes the McLennan formula to higher orders, complementing the entropy flux with the dynamical activity. The latter is more kinetic than thermodynamic and is a possible realization of Landauer's insight (1975) that, for nonequilibrium, the relative occupation of states also depends on the noise along possible escape routes. In that way nonlinear response around equilibrium can be meaningfully discussed in terms of two main quantities only, the entropy flux and the dynamical activity. The expansion makes mathematical sense as shown in the simplest cases from exponential ergodicity.Comment: 19 page

    Thermoelectric phenomena via an interacting particle system

    Full text link
    We present a mesoscopic model for thermoelectric phenomena in terms of an interacting particle system, a lattice electron gas dynamics that is a suitable extension of the standard simple exclusion process. We concentrate on electronic heat and charge transport in different but connected metallic substances. The electrons hop between energy-cells located alongside the spatial extension of the metal wire. When changing energy level, the system exchanges energy with the environment. At equilibrium the distribution satisfies the Fermi-Dirac occupation-law. Installing different temperatures at two connections induces an electromotive force (Seebeck effect) and upon forcing an electric current, an additional heat flow is produced at the junctions (Peltier heat). We derive the linear response behavior relating the Seebeck and Peltier coefficients as an application of Onsager reciprocity. We also indicate the higher order corrections. The entropy production is characterized as the anti-symmetric part under time-reversal of the space-time Lagrangian.Comment: 19 pages, 2 figures, submitted to Journal of Physics
    • …
    corecore