1,394 research outputs found
Benchmarking acid and base dopants with respect to enabling the ice V to XIII and ice VI to XV hydrogen-ordering phase transitions
Doping the hydrogen-disordered phases of ice V, VI and XII with hydrochloric
acid (HCl) has led to the discovery of their hydrogen-ordered counterparts ices
XIII, XV and XIV. Yet, the mechanistic details of the hydrogen-ordering phase
transitions are still not fully understood. This includes in particular the
role of the acid dopant and the defect dynamics that it creates within the
ices. Here we investigate the effects of several acid and base dopants on the
hydrogen ordering of ices V and VI with calorimetry and X-ray diffraction. HCl
is found to be most effective for both phases which is attributed to a
favourable combination of high solubility and strong acid properties which
create mobile H3O+ defects that enable the hydrogen-ordering processes.
Hydrofluoric acid (HF) is the second most effective dopant highlighting that
the acid strengths of HCl and HF are much more similar in ice than they are in
liquid water. Surprisingly, hydrobromic acid doping facilitates hydrogen
ordering in ice VI whereas only a very small effect is observed for ice V.
Conversely, lithium hydroxide (LiOH) doping achieves a performance comparable
to HF-doping in ice V but it is ineffective in the case of ice VI. Sodium
hydroxide, potassium hydroxide (as previously shown) and perchloric acid doping
are ineffective for both phases. These findings highlight the need for future
computational studies but also raise the question why LiOH-doping achieves
hydrogen-ordering of ice V whereas potassium hydroxide doping is most effective
for the 'ordinary' ice Ih.Comment: 18 pages, 7 figures, 1 tabl
Cloud system resolving model study of the roles of deep convection for photo-chemistry in the TOGA COARE/CEPEX region
International audienceA cloud system resolving model including photo-chemistry (CSRMC) has been developed based on a prototype version of the Weather Research and Forecasting (WRF) model and is used to study influences of deep convection on chemistry in the TOGA COARE/CEPEX region. Lateral boundary conditions for trace gases are prescribed from global chemistry-transport simulations, and the vertical advection of trace gases by large scale dynamics, which is not reproduced in a limited area cloud system resolving model, is taken into account. The influences of deep convective transport and of lightning on NOx, O3, and HOx(=HO2+OH), in the vicinity of the deep convective systems are investigated in a 7-day 3-D 248×248 km2 horizontal domain simulation and several 2-D sensitivity runs with a 500 km horizontal domain. Mid-tropospheric entrainment is more important on average for the upward transport of O3 in the 3-D run than in the 2-D runs, but at the same time undiluted O3-poor air from the marine boundary layer reaches the upper troposphere more frequently in the 3-D run than in the 2-D runs, indicating the presence of undiluted convective cores. In all runs, in situ lightning is found to have only minor impacts on the local O3 budget. Near zero O3 volume mixing ratios due to the reaction with lightning-produced NO are only simulated in a 2-D sensitivity run with an extremely high number of NO molecules per flash, which is outside the range of current estimates. The fraction of NOx chemically lost within the domain varies between 20 and 24% in the 2-D runs, but is negligible in the 3-D run, in agreement with a lower average NOx concentration in the 3-D run despite a greater number of flashes. Stratosphere to troposphere transport of O3 is simulated to occur episodically in thin filaments in the 2-D runs, but on average net upward transport of O3 from below ~16 km is simulated in association with mean large scale ascent in the region. Ozone profiles in the TOGA COARE/CEPEX region are suggested to be strongly influenced by the intra-seasonal (Madden-Julian) oscillation
Modelling tracer transport by a cumulus ensemble: lateral boundary conditions and large-scale ascent
International audienceThe vertical transport of tracers by a cumulus ensemble at the TOGA-COARE site is modelled during a 7 day episode using 2-D and 3-D cloud-resolving setups of the Weather Research and Forecast (WRF) model. Lateral boundary conditions (LBC) for tracers, water vapour, and wind are specified and the horizontal advection of trace gases across the lateral domain boundaries is considered. Furthermore, the vertical advection of trace gases by the large-scale motion (short: vertical large-scale advection of tracers, VLSAT) is considered. It is shown, that including VLSAT partially compensates the calculated net downward transport from the middle and upper troposphere (UT) due to the mass balancing mesoscale subsidence induced by deep convection. Depending on whether the VLSAT term is added or not, modelled domain averaged vertical tracer profiles can differ significantly. Differences between a 2-D and a 3-D model run were mainly attributed to an increase in horizontal advection across the lateral domain boundaries due to the meridional wind component not considered in the 2-D setup
Model sensitivity studies regarding the role of the retention coefficient for the scavenging and redistribution of highly soluble trace gases by deep convective cloud systems
International audienceThe role of the retention coefficient (i.e. the fraction of a dissolved trace gas which is retained in hydrometeors during freezing) for the scavenging and redistribution of highly soluble trace gases by deep convective cloud systems is investigated using a modified version of the Weather Research and Forecasting (WRF) model. Results from cloud system resolving model runs (in which deep convection is initiated by small random perturbations in association with so-called "large scale forcings (LSF)") for a tropical oceanic (TOGA COARE) and a mid-latitude continental case (ARM) are compared to two runs in which bubbles are used to initiate deep convection (STERAO, ARM). In the LSF runs, scavenging is found to almost entirely prevent a highly soluble tracer initially located in the lowest 1.5 km of the troposphere from reaching the upper troposphere, independent of the retention coefficient. The release of gases from freezing hydrometeors leads to mixing ratio increases in the upper troposphere comparable to those calculated for insoluble trace gases only in the two runs in which bubbles are used to initiate deep convection. A comparison of the two ARM runs indicates that using bubbles to initiate deep convection may result in an overestimate of the influence of the retention coefficient on the vertical transport of highly soluble tracers. It is, however, found that the retention coefficient plays an important role for the scavenging and redistribution of highly soluble trace gases with a (chemical) source in the free troposphere and also for trace gases for which even relatively inefficient transport may be important. The large difference between LSF and bubble runs is attributed to differences in dynamics and microphysics in the inflow regions of the storms. The dependence of the results on the model setup indicates the need for additional model studies with a more realistic initiation of deep convection, e.g., considering effects of orography in a nested model setup
Lumican is upregulated in osteoarthritis and contributes to TLR4-induced pro-inflammatory activation of cartilage degradation and macrophage polarization
Objective: Lumican (LUM) is a major extracellular matrix glycoprotein in adult articular cartilage and its expression is known to be upregulated upon cartilage degeneration. LUM is associated with the pathogen-associated molecular pattern (PAMP) activation of the TLR4 signalling cascade, with TLR4 being highly associated with inflammation in rheumatic diseases. However, the main role of the LUM structural molecule in osteoarthritis (OA) remains elusive. The aim of this study was, therefore, to understand the role of LUM during TLR4-mediated activation in OA. Methods: After measuring LUM levels in synovial fluid (SF) of OA patients and lipopolysaccharide (LPS)-induced TLR4 activation, the role of LUM in the expression of pro-inflammatory molecules and cartilage degradation was assessed in vitro and ex vivo in a cartilage explant model. Primary macrophage activation and polarization were studied upon LUM co-stimulation with LPS. Results: We demonstrate that LUM is not only significantly upregulated in SF from OA patients compared to healthy controls, but also that LUM increases lipopolysaccharide (LPS)-induced TLR4 activation. Furthermore, we show that a pathophysiological level of LUM augments the LPS-induced TLR4 activation and expression of downstream pro-inflammatory molecules, resulting in extensive cartilage degradation. LUM co-stimulation with LPS also provided a pro-inflammatory stimulus, upregulating primary macrophage activation and polarization towards the M1-like phenotype. Conclusions: These findings strongly support the role of LUM as a mediator of PAMP-induced TLR4 activation of inflammation, cartilage degradation, and macrophage polarization in the OA joint and potentially other rheumatic diseases. (C) 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.Peer reviewe
Characterizing reproducibility of cerebral hemodynamic responses when applying short-channel regression in functional near-infrared spectroscopy
Significance: Functional near-infrared spectroscopy (fNIRS) enables the measurement of brain activity noninvasively. Optical neuroimaging with fNIRS has been shown to be reproducible on the group level and hence is an excellent research tool, but the reproducibility on the single-subject level is still insufficient, challenging the use for clinical applications. Aim: We investigated the effect of short-channel regression (SCR) as an approach to obtain fNIRS measurements with higher reproducibility on a single-subject level. SCR simultaneously considers contributions from long- and short-separation channels and removes confounding physiological changes through the regression of the short-separation channel information. Approach: We performed a test-retest study with a hand grasping task in 15 healthy subjects using a wearable fNIRS device, optoHIVE. Relevant brain regions were localized with transcranial magnetic stimulation to ensure correct placement of the optodes. Reproducibility was assessed by intraclass correlation, correlation analysis, mixed effects modeling, and classification accuracy of the hand grasping task. Further, we characterized the influence of SCR on reproducibility. Results: We found a high reproducibility of fNIRS measurements on a single-subject level ( and correlation ). SCR increased the reproducibility from 0.64 to 0.81 ( ) but did not affect classification (85% overall accuracy). Significant intersubject variability in the reproducibility was observed and was explained by Mayer wave oscillations and low raw signal strength. The raw signal-to-noise ratio (threshold at 40 dB) allowed for distinguishing between persons with weak and strong activations. Conclusions: We report, for the first time, that fNIRS measurements are reproducible on a single-subject level using our optoHIVE fNIRS system and that SCR improves reproducibility. In addition, we give a benchmark to easily assess the ability of a subject to elicit sufficiently strong hemodynamic responses. With these insights, we pave the way for the reliable use of fNIRS neuroimaging in single subjects for neuroscientific research and clinical applications
Characterizing reproducibility of cerebral hemodynamic responses when applying short-channel regression in functional near-infrared spectroscopy.
Significance: Functional near-infrared spectroscopy (fNIRS) enables the measurement of brain activity noninvasively. Optical neuroimaging with fNIRS has been shown to be reproducible on the group level and hence is an excellent research tool, but the reproducibility on the single-subject level is still insufficient, challenging the use for clinical applications. Aim: We investigated the effect of short-channel regression (SCR) as an approach to obtain fNIRS measurements with higher reproducibility on a single-subject level. SCR simultaneously considers contributions from long- and short-separation channels and removes confounding physiological changes through the regression of the short-separation channel information. Approach: We performed a test-retest study with a hand grasping task in 15 healthy subjects using a wearable fNIRS device, optoHIVE. Relevant brain regions were localized with transcranial magnetic stimulation to ensure correct placement of the optodes. Reproducibility was assessed by intraclass correlation, correlation analysis, mixed effects modeling, and classification accuracy of the hand grasping task. Further, we characterized the influence of SCR on reproducibility. Results: We found a high reproducibility of fNIRS measurements on a single-subject level ( and correlation ). SCR increased the reproducibility from 0.64 to 0.81 ( ) but did not affect classification (85% overall accuracy). Significant intersubject variability in the reproducibility was observed and was explained by Mayer wave oscillations and low raw signal strength. The raw signal-to-noise ratio (threshold at 40 dB) allowed for distinguishing between persons with weak and strong activations. Conclusions: We report, for the first time, that fNIRS measurements are reproducible on a single-subject level using our optoHIVE fNIRS system and that SCR improves reproducibility. In addition, we give a benchmark to easily assess the ability of a subject to elicit sufficiently strong hemodynamic responses. With these insights, we pave the way for the reliable use of fNIRS neuroimaging in single subjects for neuroscientific research and clinical applications
Complex nanostructures in diamond
Meteoritic diamonds and synthesized diamond-related materials contain a wide variety of complex nanostructures. This Comment highlights and classifies this structural complexity by a systematic hierarchical approach, and discusses the perspectives on nanostructure and properties engineering of diamond-related materials
A new structural relaxation pathway of low-density amorphous ice
Low-density amorphous ice (LDA) is involved in critical cosmological
processes and has gained prominence as one of the at least two distinct
amorphous forms of ice. Despite these accolades, we still have an incomplete
understanding of the structural diversity that is encompassed within the LDA
state and the dynamic processes that take place upon heating LDA. Heating the
high-pressure ice VIII phase at ambient pressure is a remarkable example of
temperature-induced amorphisation yielding LDA. We investigate this process in
detail using X-ray diffraction and Raman spectroscopy, and show that the LDA
obtained from ice VIII is structurally different from the more 'traditional'
states of LDA which are approached upon thermal annealing. This new structural
relaxation pathway involves an increase of structural order on the intermediate
range length scale. In contrast with other LDA materials the local structure is
more ordered initially and becomes slightly more disordered upon annealing. We
also show that the cascade of phase transitions upon heating ice VIII at
ambient pressure includes the formation of ice IX which may be connected with
the structural peculiarities of LDA from ice VIII. Overall, this study shows
that LDA is a structurally more diverse material than previously appreciated.Comment: 12 pages, 5 figure
Cloud system resolving model study of the roles of deep convection for photo-chemistry in the TOGA COARE/CEPEX region
A cloud system resolving model including photo-chemistry (CSRMC) has been developed based on a prototype version of the Weather Research and Forecasting (WRF) model and is used to study influences of deep convection on chemistry in the TOGA COARE/CEPEX region. Lateral boundary conditions for trace gases are prescribed from global chemistry-transport simulations, and the vertical advection of trace gases by large scale dynamics, which is not reproduced in a limited area cloud system resolving model, is taken into account. The influences of deep convective transport and of lightning on NO<sub>x</sub>, O<sub>3</sub>, and HO<sub>x</sub>(=HO<sub>2</sub>+OH), in the vicinity of the deep convective systems are investigated in a 7-day 3-D 248&times;248 km<sup>2</sup> horizontal domain simulation and several 2-D sensitivity runs with a 500 km horizontal domain. Mid-tropospheric entrainment is more important on average for the upward transport of O<sub>3</sub> in the 3-D run than in the 2-D runs, but at the same time undiluted O<sub>3</sub>-poor air from the marine boundary layer reaches the upper troposphere more frequently in the 3-D run than in the 2-D runs, indicating the presence of undiluted convective cores. In all runs, in situ lightning is found to have only minor impacts on the local O<sub>3</sub> budget. Near zero O<sub>3</sub> volume mixing ratios due to the reaction with lightning-produced NO are only simulated in a 2-D sensitivity run with an extremely high number of NO molecules per flash, which is outside the range of current estimates. The fraction of NO<sub>x</sub> chemically lost within the domain varies between 20 and 24% in the 2-D runs, but is negligible in the 3-D run, in agreement with a lower average NO<sub>x</sub> concentration in the 3-D run despite a greater number of flashes. Stratosphere to troposphere transport of O<sub>3</sub> is simulated to occur episodically in thin filaments in the 2-D runs, but on average net upward transport of O<sub>3</sub> from below ~16 km is simulated in association with mean large scale ascent in the region. Ozone profiles in the TOGA COARE/CEPEX region are suggested to be strongly influenced by the intra-seasonal (Madden-Julian) oscillation
- …