131 research outputs found
Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy
The transient response of bedrock rivers to a drop in base level can be used to
discriminate between competing fluvial erosion models. However, some recent studies of
bedrock erosion conclude that transient river long profiles can be approximately
characterized by a transport‐limited erosion model, while other authors suggest that a
detachment‐limited model best explains their field data. The difference is thought to be
due to the relative volume of sediment being fluxed through the fluvial system. Using a
pragmatic approach, we address this debate by testing the ability of end‐member fluvial
erosion models to reproduce the well‐documented evolution of three catchments in the
central Apennines (Italy) which have been perturbed to various extents by an
independently constrained increase in relative uplift rate. The transport‐limited model is
unable to account for the catchments’response to the increase in uplift rate, consistent with
the observed low rates of sediment supply to the channels. Instead, a detachment‐limited
model with a threshold corresponding to the field‐derived median grain size of the
sediment plus a slope‐dependent channel width satisfactorily reproduces the overall
convex long profiles along the studied rivers. Importantly, we find that the prefactor in the
hydraulic scaling relationship is uplift dependent, leading to landscapes responding faster
the higher the uplift rate, consistent with field observations. We conclude that a slope‐
dependent channel width and an entrainment/erosion threshold are necessary ingredients
when modeling landscape evolution or mapping the distribution of fluvial erosion rates in
areas where the rate of sediment supply to channels is low
Fifteen years of research on oral–facial–digital syndromes: from 1 to 16 causal genes
Oral–facial–digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype
Controlled motion of electrically neutral microparticles by pulsed direct current
A controlled motion of electrically neutral microparticles in a conductive liquid at high temperatures has not yet been realized under the uniform direct electric current field. We propose a simple method, which employs pulsed direct current to a conductive liquid metal containing low-conductivity objects at high temperature. The electric current enables the low-conductivity particles to pass from the centre towards the various surfaces of the high-conductivity liquid metal. Most interestingly, the directionality of microparticles can be controlled and their speed can be easily regulated by adjusting pulsed current density. We find that the movement may arise from the configuration of electrical domains which generates a driving force which exceeds the force of gravity and viscous friction. All of these features are of potential benefit in separating the particles of nearly equal density but distinctly different electrical conductivities, and also offer considerable promise for the precise and selective positioning of micro-objects or the controlled motion of minute quantities of surrounding fluids
Electrocatalytic Properties of Co-Mo Alloys Electrodeposited from a Citrate-Pyrophosphate Electrolyte
Silica nanowire arrays for diffraction-based bioaffinity sensing
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Arrays of electrodeposited silica nanowires (SiO2 NWs) have been fabricated over large areas (cm(2)) on fluoropolymer thin films attached to glass substrates by a combination of photolithography and electrochemically triggered sol-gel nanoscale deposition. Optical and scanning electron microscopy (SEM) measurements revealed that the SiO2 NW arrays had an average spacing of ten micrometers and an average width of 700 nm with a significant grain structure that was a result of the sol-gel deposition process. The optical diffraction properties at 633 nm of the SiO2 NW arrays were characterized when placed in contact with solutions by using a prism-coupled total internal reflection geometry; quantification of changes in these diffraction properties was applied in various sensing applications. Bulk refractive index sensing by using the SiO2 NW grating was demonstrated with a sensitivity of 1.30×10(-5) RIU. Toposelectively chemically modified SiO2 NW arrays were used for diffraction biosensing measurements of surface binding events, such as the electrostatic adsorption of gold nanoparticles and the bioaffinity adsorption of streptavidin onto a biotin monolayer. Finally, the application of the SiO2 NW arrays for practical medical-diagnostic applications was demonstrated by monitoring the diffraction of SiO2 NW arrays functionalized with a single-stranded (ss)DNA aptamer to detect human α-thrombin from solutions at sub-pathologic nanomolar concentrations
Electropolymerization on wireless electrodes towards conducting polymer microfibre networks
H<sub>2</sub> Mapping on Pt-Loaded TiO<sub>2</sub> Nanotube Gradient Arrays
We describe a rapid
screening technique for determining the optimal
characteristics of nanophotocatalysts for the production of H<sub>2</sub> on a single surface. Arrays of TiO<sub>2</sub> nanotubes
(NTs) with a gradient in length and diameter were fabricated by bipolar
anodization, and a perpendicular gradient of Pt nanoparticles (NPs)
was generated by the toposelective decoration of the TiO<sub>2</sub> NTs. Photocatalytic hydrogen evolution was locally triggered with
a UV laser beam, and the arrays were screened in the <i>x</i> and <i>y</i> directions for spatially resolved kinetic
measurements and the mapping of the optimal hydrogen production. By
using this technique, we demonstrate the time-efficient and straightforward
determination of the tube dimensions and Pt loading for optimized
H<sub>2</sub> production. The concept holds promise for generally
improving the study of many photoreactions as a function of the physicochemical
characteristic of nanophotocatalysts, which renders it highly attractive
for the optimization of various important chemical processes
Bipolar anodization enables the fabrication of controlled arrays of TiO2 nanotube gradients
We report here a new concept, the use of bipolar electrochemistry, which allows the rapid and wireless growth of self-assembled TiO2 NT layers that consist of highly defined and controllable gradients in NT length and diameter. The gradient height and slope can be easily tailored with the time of electrolysis and the applied electric field, respectively. As this technique allows obtaining in one run a wide range of self-ordered TiO2 NT dimensions, it provides the basis for rapid screening of TiO2 NT properties. In two examples, we show how these gradient arrays can be used to screen for an optimized photocurrent response from TiO2 NT based devices such as dye-sensitized solar cells
- …
