574 research outputs found

    Connectivity in bridge-addable graph classes: the McDiarmid-Steger-Welsh conjecture

    Get PDF
    A class of graphs is bridge-addable if given a graph G in the class, any graph obtained by adding an edge between two connected components of G is also in the class. We prove a conjecture of McDiarmid, Steger, and Welsh, that says that if is any bridge-addable class of graphs on n vertices, and is taken uniformly at random from , then is connected with probability at least , when n tends to infinity. This lower bound is asymptotically best possible since it is reached for forests. Our proof uses a “local double counting” strategy that may be of independent interest, and that enables us to compare the size of two sets of combinatorial objects by solving a related multivariate optimization problem. In our case, the optimization problem deals with partition functions of trees relative to a supermultiplicative functional.Postprint (author's final draft

    Phase relations in K_xFe_{2-y}Se_2 and the structure of superconducting K_xFe_2Se_2 via high-resolution synchrotron diffraction

    Full text link
    Superconductivity in iron selenides has experienced a rapid growth, but not without major inconsistencies in the reported properties. For alkali-intercalated iron selenides, even the structure of the superconducting phase is a subject of debate, in part because the onset of superconductivity is affected much more delicately by stoichiometry and preparation than in cuprate or pnictide superconductors. If high-quality, pure, superconducting intercalated iron selenides are ever to be made, the intertwined physics and chemistry must be explained by systematic studies of how these materials form and by and identifying the many coexisting phases. To that end, we prepared pure K_2Fe_4Se_5 powder and superconductors in the K_xFe_{2-y}Se_2 system, and examined differences in their structures by high-resolution synchrotron and single-crystal x-ray diffraction. We found four distinct phases: semiconducting K_2Fe_4Se_5, a metallic superconducting phase K_xFe_2Se_2 with x ranging from 0.38 to 0.58, an insulator KFe_{1.6}Se_2 with no vacancy ordering, and an oxidized phase K_{0.51(5)}Fe_{0.70(2)}Se that forms the PbClF structure upon exposure to moisture. We find that the vacancy-ordered phase K_2Fe_4Se_5 does not become superconducting by doping, but the distinct iron-rich minority phase K_xFe_2Se_2 precipitates from single crystals upon cooling from above the vacancy ordering temperature. This coexistence of metallic and semiconducting phases explains a broad maximum in resistivity around 100 K. Further studies to understand the solubility of excess Fe in the K_xFe_{2-y}Se_2 structure will shed light on the maximum fraction of superconducting K_xFe_2Se_2 that can be obtained by solid state synthesis.Comment: 12 pages, 16 figures, supplemental materia

    Intrinsic Localized Modes Observed in the High Temperature Vibrational Spectrum of NaI

    Full text link
    Inelastic neutron measurements of the high-temperature lattice excitations in NaI show that in thermal equilibrium at 555 K an intrinsic mode, localized in three dimensions, occurs at a single frequency near the center of the spectral phonon gap, polarized along [111]. At higher temperatures the intrinsic localized mode gains intensity. Higher energy inelastic neutron and x-ray scattering measurements on a room-temperature NaI crystal indicate that the creation energy of the ground state of the intrinsic localized mode is 299 meV.Comment: 17 pages, 5 figures Revised version; final versio

    Optimal Quantum Thermometry with Coarse-Grained Measurements

    Get PDF

    Magnetism and unconventional superconductivity in Cen_nMm_mIn3n+2m_{3n+2m} heavy-fermion crystals

    Full text link
    We review magnetic, superconducting and non-Fermi-liquid properties of the structurally layered heavy-fermion compounds Cen_nMm_mIn3n+2m_{3n+2m} (M=Co, Rh, Ir). These properties suggest d-wave superconductivity and proximity to an antiferromagetic quantum-critical point.Comment: submitted 23rd International Conference on Low Temperature Physics (LT-23), Aug. 200

    Novel Coexistence of Superconductivity with Two Distinct Magnetic Orders

    Full text link
    The heavy fermion Ce(Rh,Ir)In5 system exhibits properties that range from an incommensurate antiferromagnet on the Rh-rich end to an exotic superconductor on the Ir-rich end of the phase diagram. At intermediate composition where antiferromagnetism coexists with superconductivity, two types of magnetic order are observed: the incommensurate one of CeRhIn5 and a new, commensurate antiferromagnetism that orders separately. The coexistence of f-electron superconductivity with two distinct f-electron magnetic orders is unique among unconventional superconductors, adding a new variety to the usual coexistence found in magnetic superconductors.Comment: 3 figures, 4 page
    corecore