11 research outputs found

    The population dynamics of weeds in winter wheat

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN004564 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    The impact of future socio-economic and climate changes on agricultural land use and the wider environment in East Anglia and North West England using a metamodel system

    Get PDF
    This paper describes a procedure to use a model interactively to investigate future land use by studying a wide range of scenarios defining climate, technological and socio-economic changes. A full model run of several hours has been replaced by a metamodel version which takes a few seconds, and provides the user with an immediate visual output and with the ability to examine easily which factors have the greatest effect. The Regional Impact Simulator combines a model of agricultural land use choices linked with models of urban growth, flooding risk, water quality and consequences for wildlife to estimate plausible futures of agricultural land on a timescale of 20–50 years. The model examines the East Anglian and North West regions of the United Kingdom at a grid resolution of 5 × 5 km, and for each scenario estimates the most likely cropping and its profitability at each location, and classifies land use as arable, intensive or extensive grassland or abandoned. From a modelling viewpoint the metamodel approach enables iteration. It is thus possible to determine how product prices change so that production meets demand. The results of the study show that in East Anglia cropping remains quite stable over a wide range of scenarios, though grassland is eliminated in scenarios with the 2050s High climate scenario – almost certainly due to the low yield in the drier conditions. In the North West there is a very much greater range of outcomes, though all scenarios suggest a reduction in grassland with the greatest in the 2050s High climate scenario combined with the “Regional Stewardship” (environmental) socio-economic scenario. The effects of the predicted changes in land use on plant species showed suitability for species to vary greatly, particularly between the socio-economic scenarios, due to detrimental effects from increases in nitrogen fertilisation. A complete simulation with the Regional Impact Simulator takes around 15 seconds (computer-dependent), which users who responded felt was adequate or better than adequate. The main areas for future improvement, such as the speed of the system, user interaction and the accuracy and detail of the modelling, are c

    An introduction to the farm-scale evaluations of genetically modified herbicide-tolerant crops

    No full text
    1. Several genetically modified herbicide-tolerant (GMHT) crops have cleared most of the regulatory hurdles required for commercial growing in the United Kingdom. However, concerns have been expressed that their management will have negative impacts on farmland biodiversity as a result of improved control given by the new herbicide regimes of the arable plants that support farmland birds and other species of conservation value. 2. The Farm-Scale Evaluations (FSE) project is testing the null hypothesis that there is no difference between the management of GMHT varieties of beet, oilseed rape and maize and that of comparable conventional varieties in their effect on the abundance and diversity of arable plants and invertebrates. The FSE also aims to estimate the magnitude and consider the implications of any differences that are found. 3. The experimental design of the FSE is a randomized block, with two treatments allocated at random to half-fields. The target sample is around 60-75 fields for each crop, selected to represent variation of geography and intensity of management across Britain. The experimental crops are managed by commercial farmers as if under commercial conditions. 4. Biodiversity indicators have been selected from plants and terrestrial invertebrates to identify differences between crop management regimes that may result in important ecological changes over larger scales of space and time. Field sampling is at fixed points, mainly along transects from the field boundary, starting before the crop is sown and continuing into following crops. 5. Synthesis and applications. The FSE is best considered as an investigation into the effects of contrasting crop management regimes on farmland biodiversity, rather than a study of the effects of genetic modification. It could become a model for future studies of ecological effects of the way we use and manage agricultural land
    corecore