355 research outputs found

    A system-level mathematical model for evaluation of power train performance of load-leveled electric-vehicles

    Get PDF
    The power train performance of load leveled electric vehicles can be compared with that of nonload leveled systems by use of a simple mathematical model. This method of measurement involves a number of parameters including the degree of load leveling and regeneration, the flywheel mechanical to electrical energy fraction, and efficiencies of the motor, generator, flywheel, and transmission. Basic efficiency terms are defined and representative comparisons of a variety of systems are presented. Results of the study indicate that mechanical transfer of energy into and out of the flywheel is more advantageous than electrical transfer. An optimum degree of load leveling may be achieved in terms of the driving cycle, battery characteristics, mode of mechanization, and the efficiency of the components. For state of the art mechanically coupled flyheel systems, load leveling losses can be held to a reasonable 10%; electrically coupled systems can have losses that are up to six times larger. Propulsion system efficiencies for mechanically coupled flywheel systems are predicted to be approximately the 60% achieved on conventional nonload leveled systems

    Utilization of waste heat in trucks for increased fuel economy

    Get PDF
    Improvements in fuel economy for a broad spectrum of truck engines and waste heat utilization concepts are evaluated and compared. The engines considered are the diesel, spark ignition, gas turbine, and Stirling. The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions were based on fuel-air cycle analyses, computer simulation, and engine test data. The results reveal that diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either is approximately doubled if applied to an adiabatic diesel

    Utilization of waste heat in trucks for increased fuel economy

    Get PDF
    The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions are based on fuel-air cycle analyses, computer simulation, and engine test data. All options are evaluated in terms of maximum theoretical improvements, but the Diesel and adiabatic Diesel are also compared on the basis of maximum expected improvement and expected improvement over a driving cycle. The study indicates that Diesels should be turbocharged and aftercooled to the maximum possible level. The results reveal that Diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either can be approximately doubled if applied to an adiabatic Diesel

    Temporary Tattoo Approach for a Transferable Printed Organic Photodiode

    Get PDF
    Generation of ultrathin, transferable, and imperceptible electronic devices [e.g., organic photodiode (OPD)] for multiple applications, such as personalized health monitors and wearables, is emerging due to the continuous development of materials and manufacturing processes. For such devices, the choice of a suitable substrate is of utmost importance. A water decal transfer from a temporary tattoo paper is adopted here as a substrate for ultrathin and conformable organic components because of easy and reliable transfer of a ≈600 nm robust and transparent polymer nanofilm of ethyl cellulose. Strategies for the fabrication of a transferable OPD on a temporary tattoo are investigated. A device with an overall thickness <1 μm and its performance after transfer are demonstrated. Then, efforts are put into fabricating an OPD by inkjet printing with a water-soluble active layer consisting of polythiophene and fullerene derivatives to aid cost- and material-efficient, large-scale production possibilities. Additionally, a second semitransparent electrode made of printed aluminum-doped zinc oxide and silver nanowires is used to allow usage from both sides to enhance the application potential. Both OPD examples presented here need improvement of the device performance but permitted us to highlight the versatility and application potential of temporary tattoos for transferable components. Target surfaces for the final application after transfer include artificial (flat and smooth, e.g., glass, or even complex and rough, e.g., concrete, paper, and so forth) as well as natural ones

    Three Dimensional Simulation of Gamma Ray Emission from Asymmetric Supernovae and Hypernovae

    Full text link
    Hard X- and γ\gamma-ray spectra and light curves resulting from radioactive decays are computed for aspherical (jet-like) and energetic supernova models (representing a prototypical hypernova SN 1998bw), using a 3D energy- and time-dependent Monte Carlo scheme. The emission is characterized by (1) early emergence of high energy emission, (2) large line-to-continuum ratio, and (3) large cut-off energy by photoelectric absorptions in hard X-ray energies. These three properties are not sensitively dependent on the observer's direction. On the other hand, fluxes and line profiles depend sensitively on the observer's direction, showing larger luminosity and larger degree of blueshift for an observer closer to the polar (zz) direction. Strategies to derive the degree of asphericity and the observer's direction from (future) observations are suggested on the basis of these features, and an estimate on detectability of the high energy emission by the {\it INTEGRAL} and future observatories is presented. Also presented is examination on applicability of a gray effective γ\gamma-ray opacity for computing the energy deposition rate in the aspherical SN ejecta. The 3D detailed computations show that the effective γ\gamma-ray opacity κγ∼0.025−0.027\kappa_{\gamma} \sim 0.025 - 0.027 cm2^{2} g−1^{-1} reproduces the detailed energy-dependent transport for both spherical and aspherical (jet-like) geometry.Comment: 24 pages, 13 figures. Figure 7 added in the accepted version. ApJ, 644 (01 June 2006 issue), in press. Resolution of figures lower than the published versio

    Gamma ray constraints on the Galactic supernova rate

    Get PDF
    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission

    Gamma ray constraints on the galactic supernova rate

    Get PDF
    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission

    Beef Producers\u27 Risk Perceptions of an Agroterrorism Event Occurring in Oklahoma

    Get PDF
    The purpose of this statewide study was to determine Oklahoma beef producers’ perceptions of the susceptibility of the state’s beef industry to a terrorist attack. Participants in this study were randomly selected from a population of 48,000 beef producers in this Oklahoma. All 470 respondents completed a telephone survey conducted by the Oklahoma Agricultural Statistics Service. Descriptive statistics, t-tests, and cross tabulations were used to analyze the data. Oklahoma beef producers perceived the beef industry was susceptible to an agroterrorism event, believed the feedlots to be at an elevated level of threat, were confident in their own operation’s biosecurity measures, believed their own operation was not susceptible to an agroterrorism event, and did not believe they had enough information about protection from terrorism to the beef industry

    Before it Hits the Fan: Pre-Crisis Beef Producer Information Source Preferences

    Get PDF
    The purpose of this statewide study was to determine preferences for the sources of information beef producers in Oklahoma use and trust when they seek information about agriculture during a crisis. Participants in this study were randomly selected from a population of 48,000 beef producers in the Oklahoma. All 470 respondents completed a telephone survey conducted by the Oklahoma Agricultural Statistics Service (OASS). Descriptive statistics, t-tests, and cross tabulations were used to analyze the data. Producers preferred their veterinarians when seeking information about animal health issues and any agriculturally related crisis; and preferred to receive information through county extension publications. They also perceived the local veterinarian as the most trusted and reliable source of information available. The Oklahoma State University Cooperative Extension Service, through the county extension agents and the local area livestock specialists, and the USDA were also trustworthy and reliable sources

    Agroterrorism and the Implications of Uncertainty Reduction Theory for Agricultural Communicators

    Get PDF
    As a consequence of various terrorist attacks on U.S. soil the vulnerability of American agriculture to an agro-terrorist attack has come into question. The objective of this paper is to view the threat of agroterrorism through the lens of uncertainty reduction theory and extend the original application of the theory from the realm of interpersonal communication to the mass communication level. We offer a brief overview of bioterrorism and agriculture and the general concepts of crisis communication and pre-crisis preparedness. We explain the relationship between the level of uncertainty and organizational crisis with the value of pre-crisis planning efforts. We show the importance of the agricultural communicator as a source of agricultural knowledge in the pre-crisis stage, which can contribute to reducing uncertainty following an agro-terrorist event
    • …
    corecore