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DEFINITION 01' SYMBOLS AND ABBREVIATIONS

Cp	 average specific heat of exhaust gases at
constant pressure

tv	 average specific heat of exhaust gases at
constant volume

mex,	 mass flow rate of exhaust gases

Patm	 atmospheric pressure

Pexhaust	 exhaust pressure of base engine

Pinlet	 inlet pressure of base engine

Pmax	 maximum cylinder pressure of Diesel engine

Qregeneration	 energy available from regeneration

Qtotal	 total fuel energy supplied to base engine

Tex	 temperature of base engine exhaust downstream
of turbocharger or power turbine outlet

Treg out	 temperature of base engine exhaust downstream
of vapor generator outlet

A	 difference between values

Evg	 effectiveness of vapor generator

'tact	 actual thermal efficiency of Rankine engine

'1b	brake efficiency of base engine

T ic,	 overall efficiency of compressor

T1fan	 actual fan efficiency

iv



TIM	 ideal thermal efficiency of Rankine engine
using Fluorinol-50 at maximum temperature of
3150C

*1m	 mechanical efficiency of base engine

'Imech	 mechanical efficiency of drive train
connecting Rankine engine to bas: engine

'Ith	 indicated efficiency of base engine

" Tj	 overall efficiency of turbocharger
turbitie

'IT2	 overall efficiency of power turbine

BHP	 gross brake horsepower of base engine

bmep	 brake mean effective pressure of base engine

finep	 frictional mean effective pressure of base
engine

HPfan,id	 ideal fan horsepower requirement for condenser
of Rankine engine compounding

imep	 indicated mean effective pressure of base
engine
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ABSTRACT

Trucka currently reject up to 40% of the total fuel energy in
the exhaust. Since petroleum costs are continuing to increase, there is
growing interest in techniques that can utilize this waste heat to improve
overall system efficiency. This report evaluates and compares improvement
in fuel economy for a broad spectrum of truck engines and waste heat utilization
concepts.

The engines considered are the Diesel, spark ignition, gas turbine,
and Stirling. Principal emphasis is placed on the four-stroke Diesel.
Because there will be a significant increase in the amount of exhaust energy,
the still-to-be-developed "adiabatic" Diesel is also examined.

The waste heat utilization concepts include preheating, regeneration,
turbocharging, turbocompoundirg, and Rankine engine compounding. Predictions
are based on fuel-air cycle analyses, computer simulation, and engine test
data. All options are evaluated in terms of maximum theoretical improvement,
but the Diesel and adiabatic Diesel are also compared on the "a sis of maximum
expected improvement and expected im p rovement over a driving cycle.

The study indicates that Diesels should be turbocharged and after-
cooled to the maximum possible level. At higher boost pressures, the
engine power and the fuel economy can be i.ioreased, and leaning out the
fuel-air mixture or aftercooling the compressor outlet air will reduce the
NOx. Turbocharging also increases the potential for turboc ompounding if
compressor and turbine efficiencies can be maintained. The results reveal
that Diesel driving cycle performance can be increased by 20% through increased
turbocharging, turbocom pounding, and Rankine engine compounding. The
Rankine engine compounding provides about three times as much improvement
as turbocom pounding but also costs about three times as much. Performance
for either can be approximately doubled if applied to an adiabatic Diesel.

Additional results indicate that gas turbine performance can be improved
substantially through Rankine engine compounding, but because of a lack of
energy in the exhaust, only minimal improvement is possible for the Stirling.
Except for regeneration, approximately the same improvement is possible
for the spark ignition engine as for the Diesel. Because of higher exhaust
temperatures, it would be more efficient to regenerate a spark ignition
engine.

a
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SECTION I

INTRODUCTION

Increased fuel costs and diminishing petroleum supplies are forcing
both government and industry to reexamine a number of conservation
measures. The Office of Highway Systems within the Department of Energy
is responsible for managing programs that conserve fuel by improving
overall vehicle system efficiency. One such program is currently
examining the utilization of waste heat in trucks. Although trucks
lose up to 140% of the total fuel energy in the exhaust, much of
this can be recovered using techniques such as turboeharging, turbo-
compounding, or Rankine engine compounding. Industry has evaluated
these options, but the results have been difficult to compare since
they are based on different engines and analytical approaches. There
has also been interest in the potential improvement that could be obtained
by combining techniques. The Vehicle Systems Project at the Jet Propulsion
Laboratory has conducted this study to better characterize and compare
a broad range of waste heat recovery concepts.
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SECTION II

GENERAL DESCRIPTION OF ENGINES AND OPTIONS

A.	 ENGINES

The truck engines included in this study are the Diesel, spark
ignition, gas turbine, and Stirling. Diesels are typically used in
long-haul trucks because of their relatively low operating costs and long
life. Spark ignition engines are more common in smaller, short-haul
trucks because of their lower initial cost and weight. While the gas
turbine and Stirling engines are expected eventually to offer higher
efficiency and lower emissions, they are not yet in commercial service.
Due to the limited scope of this study, most of the emphasis was placed
on the four-stroke Diesel engine. Because of the moderately high loads
and relatively constant driving cycle of a long-haul truck, it io probably
the most amenable to waste heat recovery.

To conduct the analyses on a rational basis, representative baseline
engines were selected. These are described in Table 1. As can be seen
from the table, both a non-aftercooled baseline and an aftercooled baseline
were selected for the Diesel. Except for the aftercooling and turbocharging
pressure, the engines are similar. The aftercooled engine is turbocharged
to a slightly higher level.

Most Diesels are turbocharged and about half are aftercooled in
order to increase power and reduce NOx emissions. Turbocharger pressures
are currently limited to below 2.7 atm because of turbocharger costs and
performance tradeoffs. Peak engine pressures are limited to 1.38 x 107
Nlm (2000 psi) because of mechanical and thermal considerations.
In order to minimize exhaust smoke, the air-fuel ratio is maintained
above 21:1. This represents an equivalence ratio of 0.7.

Figure 1 illustrates the flow of energy in a typical heat engine.
The distribution between shaft work, coolant, and the exhaust for the

EXHAUST

COOLANT

Figure 1. Energy Flow in a Typical Heat Engine
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baseline engines is presented in Fig. 2. Although up to 50% of the
energy is lost to the coolant, it is too low in temperature to be useful.
However, if this energy were redirected to the exhaust manifold, it

could significantly improve the performance of waste heat utilization
devices. There could also be some savings in fan power. Cummins Engine
Company, Inc., and the U. S. Army Tank Command (Ref. 1) are attempting
to develop an "adiabatic" Diesel, which could accomplish this through
the use of ceramic liners and components.

Even though an adiabatic Diesel tigine is %t currently available,

an attempt was made to assess the potential improvement in fuel economy that

could be obtained through waste heat recovery. It wss assumed that the heat

loss to the coolant would be eliminated and tiiat the exhaust temperatures
would increase in proportion to the exhaust heat. Other characteristics
were assumed to be identical to those of the baseline Diesel.

B. DRIVING CYCLE FOR DIESEL TRUCKS

For the analyses of the Diesel, a long-hau truck driving cycle
was defined. It should be noted that it is almost impossible to def'.'ne
a truly "typical" driving cycle for Diesel trucks. They operate on
different routes and under different eng,'ne cooditions. Manufactc ^s

compile typical driving cycle data by route or geographic region.

The driving cycle used for certifying exhaust emissions compliance
in heavy-duty vehicles is a 13-mode cycle, with 3 min at each condition,
as shown in Table 2. This cyc1- wakes no attempt to assign weighting
values to various speed-load point3 (other than idle) to represent
a realistic driving cycle. It dcr.-, however, cover the entire useful

operating range of the engine. I*. .v,s well Leyond the scope of this
study to assess the performance of engine systems and various subsystems
at so large a number of operating conditions. After review of the

NAPCA driving cycle used by Thermo Electron Corporation (TECO) in their
Rankine engine bottoming cycle work (Ref. 2) and diezussions with
industry, a three-point "mini-eyelt" was selected. This driving cycle is
presented in Table 3. The engine would operate between points 1 and
2 while ascending grades or accelerating and around point: 3 during cruise.

The mini-driving cycle was designed specifically for nigi-.-torque-

rise 150- to 225-kW (200- to 300-HP) engines, such as the baseline
Diesels, and does not apply directly to engines outside of Wn general.

category. Calculations carried out by graphical integration. ^t' the NAPCA
driving cycle show that the mini-cycle is fairly representati •te, and
additional analysis indicates that load variations of up to 25% will
not significantly affect overall results.

C. OPTIONS

Five wast•? heat utilization options were studied: prehea ,	.
regeneration, turbocharging (or increased turbocharging if the 	 'ine
is already turbocharged), turbocompounding, and Rankine engine c"tupoundirE,
Preheating the air, fuel, or fuel-air mixture (depending on the engine)
occurs prior to compression. Regeneration takes place after compression.

4
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DIESEL ENGINE
	 ADIABATIC DIESEL ENGINE

(OVER DRIVING CYCLE)
	

(OVER DRIVING CYCLE)

SPARK IGNITION ENGINE
	

GAS TURBINE
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Figure 2. Energy Distribution in Baseline Fra{n^s
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Table Z. Driving Cycle for Certifying Exhaust Emissions
in Heavy-Duty Vehicles

Mode bmep, 4 RPM

1 0 Idle

2 100 Rated

3 75 Rated

4 50 Rated

5 25 Rated

6 0 Rated

7 0 Idle

8 100 Higher of maximum torque and 604 of rated

9 75 Higher of maximum torque and 60% of rated

10 50 Higher of maximum torque and 604 of rated

11 25 Higher of maximum torque and 604 of rated

12 0 :'igher of maximum torque and 604 of rated

13 0 Idle

Table 3. Three-Point Mini-Driving Cycle for Diesel Engines

Time
Point Mode	 bmep, 4 RPM Weighting

1 Maximum horsepower, maximum speed	 100 2100 1/3

2 Maximum torque	 100 1200 1/3

3 Cruise	 75 1800 1/3

6
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Regeneration differs from recuperation in that, with the former, hot
and cold fluids flow alternately over a fixed bed, whereas with the
latter, hot and colds fluids flow through separate paths and exchange
heat continuously. The terms regeneration and recuperation are often
used interchangeably.

An engine is turbocharged to increase engine inlet pressure,
flow rate, and density. A typical configuration is ,)resented in Fig. 3.
The classical reason for turbocharging has been to increase the power
for a given engine size and weight. The inlet density and power can
be further increased by aftereooling the compressor outlet air. This
will also reduce NOx emissions. Aftercooling can be done through air-to-
water or air-to-air heat exchange. An air-to-air aftercooler requires
a fan to circulate the cooling air but can generally 	 to lower
temperatures. One method of driving the fan is to couple it to a tip
turbine operated by compressor bleed air (Ref. 3).

In a turbocompounded engine the exhaust gases are expanded in
a turbine and the power is transmitted back to the engine crankshaft.
The turbocompounding (or power) turbine would generally be placed down-
stream of a turbocharger turbine if the engine is turbocharged. A
typical configuration is shown in Fig. 4. Turbocompounding can also
be employed in naturally aspirated engines althcugh to a more limited
degree.

Figure 3. Schematic of Turbocharging

7
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Figure 4. Schematic of Turbocompounding

In Rankine engine compounding, the exhaust energy is used to
vaporize a low-boiling-point liquid (usually an organic liquid). Power
is transmitted back to the base engine crankshaft through a speed-matching
gear box and power takeoff. An overriding clutch may be used to prevent
transfer of negative power from the bottoming engine. Figure 5 shows
a simplified schematic of one implementation. The exhaust gases of
the base engine pass through a vapor generator, vaporizing the working
fluid. The vaporized fluid is then expanded in an expander to deliver
power. The expander may be either aerodynamic or positive displacement
machinery. The expanded fluid passes through a recuperator, releasing
most of its heat, and then through a condenser for further cooling.
In this configuration, the primary purpose of the recuperator is to
reduce the size of the condenser. After flowing through the condenser,
the liquid is pumped through the recuperator, where it is heated, and
then into the vapor generator to complete the circuit. The flow diagram
is shown in Fig. 6.
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Figure 6. Flow Diagram of Rankine Engine Compounding
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SECTION III

APPROACH

At the beginning of the study, an attempt was made to identify
the most promising options. The quantity and quality (temperature)
of the energy in the coolant and exhaust were estimated. Based on
the results, emphasis was placed on the exhaust energy since the low-
temperature heat in the coolant is too difficult to recover. The exhaust
energy and temperatures of the baseline engines under representative
driving conditions are presented in Table 4. As may be noted, a
substantial amount of waste heat is available in the exhaust of the
adiabatic Diesel and the gas turbine, a moderate amount in the exhaust
of the Diesel and the spark ignition, and very little in the exhaust
of the Stirling. Exhaust temperatures are highest for the spark ignition
and adiabatic Diesel and lowest for the gas turbine and the Stirling.

Each of the options was evaluated in greater depth to identify
areas of potential improvement and to assess the impact on engine design
and operation. For example, a Rankine engine bottoming cycle is expected
to convert waste heat into useful work with essentially no impact on
the base engine, whereas turbocharging and turbocompounding can involve
complicated interaction with the engine. Based on the assessment,
the waste heat utilization matrix presented in Table 5 was established.
Only Rankine engine compounding appeared appropriate or feasible for
the gas turbine and Stirling engines. The gas turbine is already regen-
erated, and the Stirling is preheated. As indicated in Table 4, there
is not enough energy in the exhaust of the Stirling for regeneration
or turbocompounding, and preheating the gas turbine did not appear advan-
tageous since it would reduce flow rate and power.

The study was conducted using engine test data, standard air
cycle analysis, and fuel-air cycle analysis employing real gas properties
and variable specific heats. Fuel-air cycle results were modified to
account for frictional losses and heat loss to the coolant. Actual engine
test data were utilized for this purpose. A computer program was written
to calculate the improvement to be gained from turbocompounding. The
effects of engine back pressure on volumetric efficiency, pumping loss,
and exhaust gas temperature were included in the engine model. Visits
were made to Mack Trucks, Inc., Cummins Engine Co., Inc., and Garrett
AiResearch to discuss assumptions, critical tradeoffs, at,d overall
approach.

Results were calculated for the basel.L,le engines. These are
summarized in terms of (1) maximum theoretical improvement in fuel
economy, (2) maximum expected improvement in fuel economy, and (3)
expected improvement in fuel economy over the driving cycle. Maximum
theoretical improvement was calculated assuming realistic engine perform-
ance, realistic exhaust gas temperatures, and maximum theoretical waste
heat recovery performance, e.g., 100% regenerator effectiveness, 100%
thermodynamic and 100% mechanical power turbine efficiencies, and maximum
theoretical Rankine cycle efficiency. All of the waste heat recovery
options were compared on this basis.

I
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Table 4. Exhaust Temperatures and Waste Heat of Baseline
Engines Over Typical Operating Range

Engine	 Downstream Exhaust 	 Waste Heat, % of
Temperature, oC	 Total Fuel Energy

Diesai	 400 - 600	 30 - 40

Adiabatic Diesel	 700 - 950	 60 - 65

Spark Ignition	 600 — 900	 20 - 35

Gas Turbine	 150 - 300	 55 - 70

Stirling	 150 - 300	 15

Table 5. Waste Heat Utilization Configuration Matrix

Option

Engine
Increased Rankine

Pre- Regeneration/	 Turbo- Engine
heating Recuperation	 charging Compounding

Turbocharged X X	 X X
Diesel

Turbocharged X X	 X X
Adiabatic
Diesel

Spark - X	 X X
Ignition

Regenerated - Baseline	 - X
Gas Turbine

Preheated Baseline -	 - X
Stirling

Maximum expected improvement and expected improvement over the
driving cycle were calculated only for the Diesel and the adiabatic
Diesel. In contrast to maximum theoretical improvement, they were based
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on realistic performance of the waste heat recovery devices. The maximum
expected improvement represents the most that can be obtained at any
point in the driving cycle, whereas expected improvement represents
an average over the driving cycle.

Fuel economy is defined in terms of kilometers per liter of fuel.
Improvement in fuel economy can be calculated by dividing the increase
in power by the base engine power per Eq. (1):

% improvement = kW x 100 	 (1)
kW

Power generated by waste heat recovery techniques would not have the
same transient response as the base engine power and therefore cannot
be considered as ".rue" replacement power. However, under quasi-steady-
state conditions, it would be available to reduce fuel consumption.

..
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SECTION IV

DISCUSSION OF RESULTS

The improvement in fuel economy afforded by each of the waste
heat utilization options is discussed below. Major emphasis is placed
on the Diesel.

A. PREHEATING

Some preheating occurs in Diesel engines as the air flows through
the warm intake manifold and inlet ports. If the preheating were increas-
ed, the inlet air density would decrease, and this in turn would reduce
the mass flow rate and power. In addition, the higher temperatures
resulting from preheating would tend to increase NOx emissions. Preheat-
ing the fuel, on the other hand, would complicate fuel metering without
significantly improving the combustion efficiency (Ref. 4). Because
of these deficiencies, preheating was not considered in further detail.

B. REGENERATION/RECUPERATION

To regeneratively heat an internal combustion engine, heat must
be transferred from the exhaust gas to the compressed charge prior
to combustion. If it were possible to implement this, fuel requirements
could be reduced. This is illustrated on temperature-entropy diagrams
in Fig. 7. Figure 7a represents a conventional Diesel engine. In Fig. 7b,
the compressed charge at point 2 is regeneratively heated to point 21.
The percentage improvement in fuel economy can be calculated by Eq. (2):

x improvement =	
Qregeneration	

x 100	 (2)
Qtotal - Qregeneration

where Qregeneration = Cv( T2' - T2).

Although no successful technique for regenerating a Diesel engine
has yet been demonstrated, a theoretical analysis was performed to evalu-
ate the potential. The results indicate a maximum theoretical fuel
economy improvement of 8% and a maximum expected improvement of 5%.
For the latter, a regenerator effectiveness of 70% was assumed.

Regeneration could be equally well applied to spark ignition
engines. Because of higher exha;ist temperatures, theoretical improvements
of up to 25% are possible. If properly designed and implemented, this
could be an attractive technique for improving the fuel economy of
future spark ignition engines.

13
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Figure 7. Temperature-Entropy Diagram of Conventional and
Regenerated Diesel Engines

C.	 TURBOCHARGING

Under certain conditions, turbocharging can improve fuel economy
without adversely affecting engine performance. This is especially
true for Diesel engines. The Diesel turbocharge alternatives considered
in this study are:

(1) Allow the maximum cylinder pressure to increase to im-
prove indicated efficiency.

(2) All the mean effective pressure to increase to improve
mechanical efficiency.

(3) Reduce the piston speed to increase mechanical effi-
ciency.

(4) Lean out the fuel-air mixture to increase indicated
efficiency.

To conduct the analysis a maximum turbocharger pressure had
to be established. Based on economic considerations the pressures
are currently limited to 2.7 atm. If sufficient incentive is provided,
this could be increased to 3 to 3.5 atm. Above this range, the compres-
sio^ pressure would exceed the maximum engine pressure of 1.38 x 107
N/m (2000 psi). If the engine pressure limit were also relaxed, the
turbocharger ratio could be increased significantly, provided the fuel-
air mixture is not leaned-out. If it is leaned-out, an energy limit
is reached at about 4 atm. Based on all of the above considerations,
a maximum turbocharger pressure of 3 atm was assumed. To maintain
this limit at high engine speeds, some waste-gating may be necessary.
The analysis also assumed that turbocharger efficiencies could be maintained
at higher boost pressures. If this cannot be accomplished, the benefits

14
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C.	 TURBOCHARGING

Under certain conditions, turbocharging can improve fuel economy
witr,out adversely affecting engine performance. This is especially
true for Diesel engines. The Diesel turbocharge alternatives considered

in this study are:

(1) Allow the maximum cylinder pressure to increase to im-

prove indicated efficiency.

(2) All the mean effective pressure to increase to improve
n 	 mechanical efficiency.

(3) Reduce the piston speed to increase mechanical effi-
ciency.

(4) Lean out the fuel-air mixture to increase indicated

efficiency.

To conduct the analysis a maximum turbocharger pressure had

to be established. Based on economic considerations the pressures
are currently limited to 2.7 atm. if sufficient incentive is provided,

this could be increased to 3 to 3.5 atm. Above this range, the compres-
siO5 pressure would exceed the maximum engine pressure of 1.38 x 10/
N/m (2000 psi). If the engine pressure limit were also relaxed, the
turbocharger ratio could be increased significantly, provided the fuel-
air mixture is not leaned-out. If it is leaned-out, an energy limit
is reached at about 4 atm. Based on all of the above considerations,
a maximum turbocharger pressure of 3 atm was assumed. To maintain

this limit at high engine speeds, some waste-gating may be necessary.
The analysis also assumed that turbocharger efficiencies could be maintained

at higher boost pressures. If this cannot be accomplished, the benefits
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from turbocharging will decrease. From this point of view, the turbo-
charging results may be optimistic. The turbocharging options are
discussed below.

1.	 Increasing the Maximum Cylinder Pressure

Although fuel economy can be improved by raising the cylinder
pressures, Diesels are currently limited to 1.38 x 10 Nlm 2 (2000 psi).
Increasing the maximum pressure will either adversely affect durability
or require redesign of the engine. Durability is a primary selling
point for Diesels, and retooling for stronger components may not be
economically feasible. Nevertheless, the theoretical improvement was
calculated.

Raising the maximum pressure tends to make the Diesel cycle
approach the Otto cycle (spark ignition) thermodynamically. Since
heat addition at constant volume is more efficient than at constant
pressure, t!.e indicated efficiency is increased. The engine indicated
mean effective pressure will also increase. Because there will be only
a relatively small increase in friction at higher pressure (Ref. 5),
the mechanical efficiency will probably also improve. This is illustrat-
ed by Eq. (3):

imep - finep
elm —	 imep

	
(3)

The increase in indicated and mechanical efficiencies results in an
increase in brake efficiency. Analysis indicates that if the maximum
cylinder pressure could be raised to 2.06 x 107 N/m2 (3000 psi), fuel
economy would be increased by 10 to 13%. Unfortunately, the combustion
temperatures would increase by 125 0C, probably increasing the NOx.
Because of engine design and NOx constraints, this option may not be
feasible.

All the remaining options are based on maximum cylinder pressures
of 1.38 x 107 N/m2 (2000 psi). It is assumed that this is accomplished
through retardation of the ignition timing. Fuel-air cycle analysis
indicates that over the limited turbocharge range considered retarding
is slightly more efficient than reducing compression ratio. Little or no
net improvement in brake efficiency can be obtained if a Diesel is
turbocharged to a higher pressure and reduced in compression ratio.
However, some modest improvement can be gained by turbocharging and
retarding. Some increase in NOx emissions may occur unless the fuel-
air mixture is leaned out. Aftercooling will alleviate this potential
problem but may not eliminate it. If the compressor outlet air on
the non-aftercooled engine were cooled from 140 to 60 0C, it would
result in a 95 to 1200C decrease in peak temperature. This amount
of aftercooling will also increase the power by 16% and the brake
efficiency by 2x.

15



2. Increasing Mean Effective Pressure to Increase Mechanical Efficiency

By increasing the turbocharge pressure of the baseline non-aftercooled

engine to 3 atm and retarding to maintain constant maximum pressure, the

indicated mean effective pressure and power can be increased by 37%. This

will increase the mechanical efficiency by 7%. Since the indicated
efficiency is decreased by 3% due to retardation, the improvement in
brake efficiency is only 4%. Average combustion temperature would

increase by less than 1000C.

3. Reducing Piston Speed to Increase Mechanical Efficiency

The brake efficiency can be further increased if the piston speed

is decreased. One app^oach is to reduce the rear axle ratio. Since
the piston friction is proportional to the mean piston speed (Ref. 5),
there could he a measurable improvement in the mechanical efficiency.
There could also be a slight penalty in the indicated efficiency due

to poorer mixing of the charge. Turbocharging to 3 atm, retarding,
and reducing piston speed to maintain constant power yielded atout

9% improvement in mechanical efficiency. Indicated efficiency is expect-
ed to be slightly lower than in alternative 2. The net improvement
in brake efficiency is predicted to be between 4 and 6%. About the
same improvement is expected over the driving cycle.

4. Leaning-out the Fuel-Air Mixture to Increase Indicated Efficiency

Another alternative for increasing fuel economy is to turbocharge

and lean-out the fuel-air mixture, maintaining constant power. The
leaned-out mixture reduces the combustion temperatures and thus the
specific heats. Because of the lower specific heats, there is a higher

t emperature rise per unit mass of fuel. In addition, the residuals

tend to have a lower molecular weight. Both of these effects increase
indicated efficiency. Since the mechanical efficiency remains essentially

unaffected, the net result is an increase in brake efficiency. If
the turbocharging is increased from 1.P to 3.0 atm, the equivalence

ratio must be reduced from 0.7 to 0.5 to maintain constant power.
Fuel-air cycle analysis indicates about 3% improvement in fuel economy.

Since the peak combustion temperature decreases by 315°C, there will
also be a reduction in NOx.

Further improvement in performance is possible for engines operating

at lower turbocharge ratios. To a limited degree, manufacturers have
already taken advantage of this to reduce NOx without paying large

penalties in efficiency or power. Thin potential is plotted in Fig. 8.
Turbocharging results are summarizes n Table 6.

5. Turbocharging a Spark Ignition Engine

As discussed above, turbocharging can improve
without sacrificing power. This may not be true for short-haul trucks
with spark ignition engines. These engines cannot be turb^charged much

16
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Figure 8. Effect of Turboeharging on Fuel Economy of

Diesel Engines

without reducing *he compression, ratio or there will be detonation
and NOx problems. Since the efficiency of a spark ignition engine
decreases rapidly with decreasing compression ratio, this is not a
favorable tradeoff. Even s . y aftcrcooling and using fuel with better
anti-knock characteristics, •:,me turbocharging may be possible. The

results of fuel a'r cycle analysis indicate that a maximum theoretical
improvement of 5% is possible if the naturally aspirated baseline engine

is turbochar , ,d to 2 atm .

D.	 TURBOCOMPOUNDING

Because of relatively low upstream manifold pressures, only 15
to 30% of the exhaust energy is available to a power turbine.

Foecuna'L;ely, turbines operate at fairly high efficiencie. Df 60 to
80%. Another major limitation of turbocompounding is that it increases

engine back p.essure. e Higher back pressure increases the 	 gimping

lozse:;, reduces vo jumf-trice e1Ticieno:: rind power, : ncj car: c	 "Ie

flow. Although an upper limit could not be firmly established;
was assumed that the ack pressure could not exceed the inlet pressure

by more than 6.9 x 10 N/m (10 psi).

It is important to understand how exhaust energy is converted

to useful power. Figure 9 represerts the exhaust energy distribution
on a P-V diagram for a turbocharged four-stroke engine. The solid
line in the diagram (4-5-5'-6) represents the exhaust process. The

• The back pressure is defined as the average exhaust manifold pressure
immediately downstream of the exhaust valves.
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hot gases at the end of the expansion stroke (point 4) suddenly expand
to a low exhaust manifold pressure (point 5). This expansion process
from 4 to 5 is called the blowdown process. Because of the very short
time interval, it is difficult to capture the kinetic energy acquired
during this process. When the expanding gases stagnate, the kinetic
energy is converted to heat (process 5-59. If the process is adiabatic,
no energy will be lost but the thermodynamic availability w i ll be
decreased. The hot gases at point 5 1 are then expanded to point 6
in two steady-flow turbines '"he first turbine drives the turbocharger
compressor and the second g,: ^ ..tes power that is transmitted to the
crankshaft.

Figure 9 also identifies the engine pumping work, the energy
required to drive the compressor, and the turbine output. The pumping
work represents the work done by the engine during the inlet and exhaust
strokes. If the exhaust pressure is higher than the inlet pressure,
the pumping work is negative. These pumping losses can detract from
the engine output. Even though the figure illustrates theoretical pumping
work, actual work is assumed to be 50% higher if negative or 50% lower if
positive because of flow restrictions in the manifolds and valves. Inlet
pressures tend to be lower than theoretical and exhaust pressures higher.

Turbine output and pumping losses both increase with increasing
back pressure, but because of the slope of the adiabatic line, turbine
work does so at a decreasing rate. The system is theoretically optimized
when the power turbine output minus th , . , imping loss is maximized.
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Additional improvement can be obtained if the engine is turbocharged
to higher inlet pressures and reasonable turbocharger efficiencies
can be maintained.

Some of the turbocompounding alternatives examined in this study
are discussed below. They include the following:

(1) Allow the engine back pressure to incz-ease.

(2) Maintain a constant pressure differential across the engine
by increasing the turbocharge ratio.

(3) Increase the utilization of blowdown energy.

(4) Increase the amount of energy in the exhaust by retarding
the injection timing.

1. Increasing Engine Back Pressure

In this case, inlet pressure was maintained constant as back
pressure was increased. The effects on pumping work, volumetric efficiency,
engine power, and turbine power were simulated with a computer program.
Fuel flow rate was decreased as volumetric efficiency decreased in order
to maintain a constant equivalence ratio. Turbocharger and power turbine
component efficiencies were obtained by evaluation of test data and
varied parametrically. Calculations were made at all three points in
the driving cycle. Results for the non-aftercooled baseline Diesel
are plotted in Figs. 10, 11, and 12. The results for the baseline
aftercooled engine are plotted in Fig. 13. The expected improvement
in fuel economy illustrated in Figs. 10 and 13 is less than that in
Fig. 11 because of lower component efficiencies at the higher boost
pressures. The sensitivity of turbocompounding performance to exhaust
temperatures is shown in Fig. 12.

It can be seen from the Figs. 10 to 13 that the peak improvement
in fuel economy occurs with pressure differentials of -3.5 x 10 44 to
-6.9 x 104 N/m2 (-5 to -10 psia). It can also be noted that the results
are a strong function of the turbocharger and power turbine efficiencies.
For the baseline non-aftercooled Diesel, a maximum theoretical improvement
of 11% is predicted. The maximum expected improvement is 6%, and the
expected improvement over the driving cycle is 3 to 4%. Only half
as much improvement is possible for the aftercooled baseline because
of the lower effective turbocharger component efficiencies.

2. Increasing Turbocharge Ratio to Maintain Constant Pressure
Differential Across the Engine

There are several reasons for increasing the turbocharge ratio.
Higher boost pressures can alleviate problems associated with high back
pressures, improve base engine performance, and increase the amount
of energy available to the power turbine. For the analysis, it was
assumed that the turbocharge pressure was increased to 3 atm without
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any decrease in compressor or turbine efficiency. The results indicate that
the improvement that can be obtained from turbocompounding about doubles.
For the baseline aftercooled engine, only about half as much improvement
would be possible since it is already turbocharged to a higher level.

3. Increasing the Percentage of Usable Blowdown Energy

During a short interval following the exhaust valve opening,
hot gases in the cylinder expand to a low exhaust manifold pressure.
The kinetic energy achieved during this blowdown process is difficult
to capture because of the unsteady flow, short time period, and irrevers-
ible flow losses across the exhaust valve. Because of these difficulties,
a significant amount of available energy is lost. Refinement of the
exhaust valve design and coupling impulse turbines to every two or three
cylinders could possibly recover a portion of this energy, but implementation
is difficult. Even so, an analysis was performed to determine the potential
improvement. The results indicate that if 100% of the blowdown energy
could be utilized, turbocompounding performance could be increased by
a factor of 2 to 2.5.

4. Increasing the Energy Available in the Exhaust by Retarding the
Injection Timing

The possible benefits of retarding engine timing in order to
increase exhaust energy were investigated using fuel-air cycle analysis.
The effect was simulated by reducing the maximum pressure from 1.38
x 107 to 1.24 x 107 N/m2 (2000 to 1800 psi). This resulted in a slight
increase in exhaust temperature and a 1% improvement in turbocompounding
performance. However, the retardation reduced base engine efficiency
and power by more than 3%. Thus the tradeoff does not appear favorable.
Diesel turbocompounding results are presented in Table 7.

5. Turbocompounding Spark Ignition Engines

Turbocompounding can also be employed in spark ignition engines.
As discussed earlier, it is difficult to turbocharge spark ignition
engine,i without reducing the compression ratio and severely penalizing
fuel economy. In this study, the naturally aspirated baseline was
turbocompounded to a back pressure differential of 6.9 x 10 4 N/m2 (10
psi). The results indicate a maximum theoretical improvement of about
13%. This is comparable to the improvement for the Diesel. Expected
improvement over the driving cycle would be much less.

6. Turbocompounding Costs

Components needed to implement turbocompounding include a turbine,
turbine housing, speed reduction gear box, and a coupling device.
Although some design problems might be encountered, the basic concept
is relatively simple. Based on limited data, the manufacturing cost
is estimated to be between $300 and $800.
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Table 7. Results of Diesel Turbocompounding (ENDT 675)

Improvement in Fuel Economy, %

Alternative
Maximum	 Maximum	 Expected Over

Theoretical	 Expected	 Driving Cycle

Increase Engine	 11	 6	 3 - 4
Back Pressure

Increase Turbo-	 23	 15	 7
charging Pressure
to 3 atm

Utilize 100% Blow-	 25	 17	 8

down Energy

Retard Injection	 --	 -3	 --

E.	 RANKINE ENGINE COMPOUNDING

Theoretically, any external combustion engine may be employed
as a bottoming engine. However, only two cycles have received much
attention as of today. Mechanical Technology, Inc., studied the use
of a free-piston Stirling engine/linear alternator for this application.
Their analytical predictions were encouraging, but there has been no
further development. TECO has studied, built, and tested Rankine bottoming

engines. Because of the limited scope of this effort, only the Rankine

engine bottoming cycle was quantitatively evaluated. Consistent
with TECO's study, Fluorinol-50 was selected as the working fluid,
even though this imposes an unnecessary penalty on the Rankine engine

performance when exhaust temperatures exceed 5400C.

In contrast to the turbocompounding options, most of the exhaust
energy is usable but the conversion efficiencies are low. The most
significant advantages of Rankine engine compounding are: (1) the ability

to use low-quality heat and (2) minimum interference with the base
engine. There is a minimum effect on engine back pressure. During
the study, total txhaust energy, usable exhaust energy, ideal Rankine

cycle efficiency, expected Rankine engine efficiency, and fan horsepower

requirements were evaluated. The percent increase in fuel economy
was calculated using Equation (4). The parameters are listed in Table 8.
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% improvement =

mex ? p( Tex Treg out)EVCnid nid
HP  nfa

pact nmech - 	
T1 fan 

id

n

BHP
x 100 (4)

The largest improvement is possible at the maximum horsepower
point, but in contrast to turbocompounding, there is only a slight
decrease over the driving cycle. Percentage-wise there is very little
difference between the aftercooled and non-aftercooled baselines.
The results indicate a maximum theoretical improvement of 26%, a maximum
expected improvement of 15%, and an expected improvement over the driving
cycle of 12%. These numbers are in agreement with TECO's projections.
In their work, they combined the base engine radiator and fan with
the condenser radiator and fan. By using a low-pressure-drop radiator,
high-efficiency fan, and variable-speed fan drive, they were able to
improve performance by another 3 percentage points.

Basic analysis was also performed for the spark ignition, gas
turbine, and Stirling engines. The maximum theoretical improvement
in fuel economy was calculated to be 22% for the spark ignition engine
and 37% for the gas turbine. Only 7% improvement is possible for the
Stirling engine because of the wall amount of energy in the exhaust
(see Table 4).

The preceding analysis neglects transient response time. The
waste heat recovery devices do not respond instantly to increased power
demands. This is especially true for the Rankine engine bottoming
cycle. It would therefore be misleading to include the power from
the bottoming cycle in the base engine power rating, even though this
power would be available under quasi-steady-state conditions to reduce
fuel consumption.

The system integration and packaging challenges of compounding
with a Rankine engine are significant, although they appear to have
been solved, at least conceptually, by TECO and Mack Trucks, Inc.
Based on limited 'ata, the manufacturing cost of a complete Rankine
engine bottoming aystem is estimated to be between $1000 and $2000.
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SECTION V

CONCLUSIONS

The results were quite sensitive to several second-order effects
such as the varation of specific heat with temperature and equivalence
ratio. It was also difficult to determine the effects of slower piston
speed on mixing and of higher peak pressure on piston friction. In
general, the results are expected to be accurate to within _3 percentage
points.

The most promising Diesel alternatives are summarized in Table 9.
Maximum theoretical improvement, maximum expected improvement, and
expected improvement over the driving cycle are included. It is con-
cluded that preheating would not improve engine efficiency and, in
fact, could reduce power and increase NOx. Regeneration could provide
moderate improvement but would pose complex implementation problems.
Diesels should be turbocharged and aftercooled to the maximum possible

Table 9. Fuel Economy Improvement for Promising Diesel Alternatives

Improvement in Fuel Economy, %

Alternative
Expected

Maximum	 Maximum	 Over Driving
Theoretical	 Expected	 Cycle

Aftercool	 3	 2	 1 - 2

Increase Turbocharging 	 -	 4 - 6	 2 - 5
to 3 atm

Regeneration	 8	 5	 3 - 4

Turbocompound	 11	 6	 3

Increase Turbocharging 	 23	 15	 7
to 3 atm and 1irbocompound

Compound With Rankine 	 26	 15	 12
Engine

Turbocompound and Rankine	 28	 15	 15
Engine Compound

Increase Turbocharging	 40	 26	 20 - 26
to 3 atm. Turbocompound
and Rankine Engine Compound
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level. The baseline Diesel driving cycle performance can be increased
by 6% through aftercooling and increased turboeharging. Reduction in
NOx emissions can be obtained by leaning out the fuel-air mixture or
aftercooling. Increasing the maximum allowable cylinder pressure appears
to offer additional improvement, but retooling costs and NOx problems
may preclude this option.

Turbocompounding can improve performance over the driving cycle
by 3 to 4%. If the turbocharge pressure is raised to 3 atm, the improvement
can be doubled. Turboeompounding performance can also be improved
if more blowdown energy is utilized.

Rankine engine compounding offers three times more fuel economy
improvement than turbocompounding but may also cost three times as
much. The Rankine engine predictions appear to be consistent with
TECO's results.

The effects of turbocompounding and Rankine engine compounding over
the driving cycle are approximately additive. If the baseline Diesel is
turbocharged to 3 atm, turbocompounded, and Rankine engine compounded,
its performance could be improved by 20%. Even this is not an upper limit.
Performance of an adiabatic Diesel could be improved by nearly 40%.

The results for all five engines are summarized in Table 10.
They are specified in terms of maximum theoretical improvement. The
spark ignition projections are similar to those of the Diesel except
for regeneration. As a result of higher exhaust temperatures, there
would be about three times as much potential improvement for regenerating
a spark ignition engine as for a Diesel. It also appears that gas
turbines should be Rankine engine compounded. Due to the large amount
of energy available in the exhaust, a significant improvement can be
obtained. Conversely, because of the low amount of energy in the exhaust
of a Stirling engine, only a very limited improvement is possible.
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Table 10. Maximum Theoretical Fuel Economy Improvement in
Truck Engines

Turbocom-
po^inding Rankine
(!"Ox Effi- Engine

Regenera- Turbo- cient Power Compound-
Engine tion charging Turbine) ing

Diesel 8 6 11 26

Adiabatic Diesel 25 6 29 - 34 40

Spark Ignition 25 5 13 22

Gas Turbine - - - 37

Stirling - - - 7

29



REFERENCES

1. Private Communication, Oldfield, T., Stacy, J., Lyn, W. T., and
Ahlers, C., Cummins Inc., Cummins Technical Center, Columbus,
Indiana, May 26, 1977.

2. Feasibility  Test on Compounding. the Internal Combustion Engine
for Automotive Vehicles: Task II, TE 4193-76-75, Thermo Electron
Corporation, Waltham, Massachusetts.

3. Hot hausen, G., Pekar, F. J., and Jeney, A. F., Integral Air-to-
= intercooling. A New Way to Improve Fuel Economy. Gaseous
EmLtsions and Increased Output, ASME Publication No. 76-DGP-12,
1976.

4. Private Communication, Pelizonni, W., Jeney, F., Yumlu, L., and
King, W., Mack Trucks Inc., Hagerstown, Maryland, May 20, 1977.

5. Taylor, C. F., and Taylor, E. S., The Internal Combustion Engine,
Second Edition, International Textbook Company, Scranton, Pennsylvania,
August 1962.

30


	GeneralDisclaimer.pdf
	0015A03.pdf
	0015A03_.pdf
	0015A04.pdf
	0015A05.pdf
	0015A06.pdf
	0015A07.pdf
	0015A08.pdf
	0015A09.pdf
	0015A10.pdf
	0015A11.pdf
	0015A12.pdf
	0015A13.pdf
	0015A14.pdf
	0015A14_.pdf
	0015A14a.pdf
	0015B02.pdf
	0015B02_.pdf
	0015B03.pdf
	0015B04.pdf
	0015B05.pdf
	0015B06.pdf
	0015B07.pdf
	0015B08.pdf
	0015B09.pdf
	0015B10.pdf
	0015B11.pdf
	0015B11_.pdf
	0015B12.pdf
	0015B13.pdf
	0015B14.pdf
	0015B14_.pdf
	0015C02.pdf
	0015C03.pdf
	0015C04.pdf
	0015C05.pdf
	0015C05_.pdf
	0015C06.pdf
	0015C07.pdf
	0015C08.pdf
	0015C09.pdf
	0015C10.pdf
	0015C11.pdf
	0015C12.pdf
	0015C13.pdf



