65 research outputs found

    Hydrothermal hydrolysis of starch with CO2 and detoxification of the hydrolysates with activated carbon for bio-hydrogen fermentation.

    Get PDF
    The imminent use of hydrogen as an energy vector establishes the need for sustainable production technologies based on renewable resources. Starch is an abundant renewable resource suitable for bio-hydrogen generation. It was hypothesised that starch hydrolysates from a large (250 mL) hydrothermal reactor could support bioH2 fermentation without inhibition by toxic byproducts.\ud \ud Starch was hydrolysed at high concentrations (40 200 g.L-1) in hot compressed water (HCW) with CO2 at 30 bar in a 250 mL reactor, the largest so far for polysaccharide hydrolysis, at 180 235 °C, 15 min. Hydrolysates were detoxified with activated carbon (AC) and tested in biohydrogen fermentations. The maximum yield of glucose was 548 g.kg starch 1 carbon at 200 °C. 5 hydroxymethyl furfural, the main fermentation inhibitor, was removed by AC to support 70% more hydrogen production than the untreated hydrolysates. The potential utilization of starch hydrolysates from HCW treatment for upscaled fermentations is promising

    A review of the valorization and management of industrial spent catalyst waste in the context of sustainable practice: The case of the State of Kuwait in parallel to European industry

    Get PDF
    Industrial solid waste management encompasses a vital part of developed and developing countries strategies alike. It manages waste generated from vital industries and governs the hazardous waste generated as a major component of integrated waste management strategies. This article reviews the practices that govern the management approaches utilized in the developed world for industrial spent catalysts. It critically assesses the current situation of waste management within the developing world region focusing on the industrial waste component, in a novel attempt to crucially develop a strategy for a way forward based on best practices and future directions with major European industries. The review also draws parallels with European countries to compare their practices with those of the State of Kuwait, which rely solely on landfilling for the management of its industrial waste. Spent catalysts recovery methods are discussed at length covering conventional methods of valuable metals and chemicals recovery (e.g., hydrometallurgical, solid–liquid and liquid–liquid extraction) as well as biological recovery methods. A major gap exists within regulations that govern the practice of managing industrial waste in Kuwait, where it is essential to start regulating industries that generate spent catalysts in-view of encouraging the establishment of valorization industries for metal and chemical recovery. This will also create a sustainable practice within state borders, and can reduce the environmental impact of landfilling such waste in Kuwait

    Counting carbon fibres by electrical resistance measurement

    Get PDF
    AbstractElectrical Impedance Measurement has been used to measure the diameter of single carbon fibres to within 3% of the actual value measured by Scanning Electron Microscopy (SEM). The precision of the technique developed also allows for the accurate determination of the number of fibres present in a carbon fibre bundle, such data are important for the calculation of fibre tensile strength from the tensile force applied to carbon fibre bundles. The impedance of a single carbon fibre and carbon fibre bundles of up to 20 fibres have been measured, with results showing good agreement with theoretical values. The impedance of multiple lengths of carbon fibres ranging from 80 to 300mm has also been studied, with the impedance being directly proportional to the fibre length, as per electrical theory. This technique will be suitable for determining the number of fibres in a virgin or recycled carbon fibre bundle

    Accelerated degradation of Polyetheretherketone (PEEK) composite materials for recycling applications

    Get PDF
    AbstractThe decomposition of Polyetheretherketone (PEEK) is carried out at 623 K within 30 min using a co-solvent system comprising of ethanol and water. It has not previously been possible to carryout the decomposition of PEEK below 703 K in aqueous media. Decomposition is achieved using catalytic quantities of caesium carbonate (Cs2CO3), as low as 19 μmol ml−1, in a high pressure bomb reactor. Carbon fibres are separated from a PEEK/carbon fibre composite and analysed by SEM-EDX. A reaction scheme is proposed for the decomposition process, producing phenol and dibenzofuran as major products. Phenol is analysed quantitatively by means of HPLC, the identification of decomposition products is performed by GC–MS. Decomposition of PEEK at 7 K above its melt temperature using Generally Recognised as Safe (GRAS) solvents represents a significant advance in the recycling of end-of-life, contaminated and deteriorated thermoplastic composite materials

    A Review of The Valorisation and Management of Industrial Spent Catalyst Waste in The Context of Sustainable Practice: The Case of The State of Kuwait in Parallel to European Industry

    Get PDF
    Industrial solid waste management encompasses a vital part of developed and developing countries strategies alike. It manages waste generated from vital industries and governs the hazardous waste generated as a major component of integrated waste management strategies. This communication reviews the practices that govern the management approaches utilised in the developed world for industrial spent catalysts. It critically assess the current situation of waste management within the developing world region focusing on the industrial waste component, in a novel attempt to crucially develop a way forward strategy based on best practices and future directions with major European industries. The review also draws parallels with European countries to compare their practices with those of the State of Kuwait, which rely solely on landfilling for the management of its industrial waste. Spent catalysts recovery methods are discussed in length covering conventional methods of valuable metals and chemicals recovery (e.g. hydrometallurgical, solid/liquid and liquid-liquid extraction) as well as biological recovery methods. A major gap exists within regulations that govern the practice of managing industrial waste in Kuwait, where it is essential to start regulating industries that generate spent catalysts in-view of encouraging the establishment of valorisation industries for metal and chemical recovery. This will also create a sustainable practice within state borders, and can reduce the environmental impact of landfilling such waste in Kuwait

    An Examination of Celtic Craft and the Creative Consciousness as a Contribution to Marketing Creativity

    Get PDF
    Examination of the Celtic craft sector identifies a creative form of marketing which has its foundations in imagination, intuition and innovation, rather than the linear prescriptions of formal marketing frameworks and language which still dominate contemporary marketing management texts. The creative marketing competencies identified in the sector are also grounded within a wider creative marketing paradigm where experimental forms of marketing are encouraged, postmodern ideals are embraced and artistic philosophy and practice encouraged. The controlled Saxon influenced Marketing Establishment is challenged by the freer, more creative fringe of Celtic marketing as the avant garde

    A step change in the recycling of composite materials

    No full text
    • …
    corecore