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Abstract 28 

Industrial solid waste management encompasses a vital part of developed and developing countries 29 

strategies alike. It manages waste generated from vital industries and governs the hazardous waste 30 

generated as a major component of integrated waste management strategies. This communication reviews 31 

the practices that govern the management approaches utilised in the developed world for industrial spent 32 

catalysts. It critically assess the current situation of waste management within the developing world 33 

region focusing on the industrial waste component, in a novel attempt to crucially develop a way forward 34 

strategy based on best practices and future directions with major European industries. The review also 35 

draws parallels with European countries to compare their practices with those of the State of Kuwait, 36 

which rely solely on landfilling for the management of its industrial waste. Spent catalysts recovery 37 

methods are discussed in length covering conventional methods of valuable metals and chemicals 38 

recovery (e.g. hydrometallurgical, solid/liquid and liquid-liquid extraction) as well as biological 39 

recovery methods. A major gap exists within regulations that govern the practice of managing industrial 40 

waste in Kuwait, where it is essential to start regulating industries that generate spent catalysts in-view of 41 

encouraging the establishment of valorisation industries for metal and chemical recovery. This will also 42 

create a sustainable practice within state borders, and can reduce the environmental impact of landfilling 43 

such waste in Kuwait.  44 

Keywords: Spent catalysts, Industrial Waste, Hydrometallurgical treatment, Extraction, Waste 45 

management.  46 
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1. Introduction  56 

Solid Waste Management (SWM) has become the centre of attention within research and academic 57 

circles in recent years due to its paramount importance from environmental, social and economic 58 

points of view. SWM covers the concept of waste reduction and reuse as well as the processes and 59 

technologies of recycling, valorisation/recovery, aerobic or anaerobic treatment, thermal treatment 60 

with or without energy recovery, fuel production and landfilling. Typically, solid waste (SW) is 61 

classified as municipal solid waste (MSW), industrial solid waste (ISW), agriculture waste or 62 

commercial waste (CW). In general, MSW refers to the mixture of residential and commercial refuse 63 

such as garden and food waste, paper, textiles and plastics film/rigid products. On the other hand, 64 

ISW refers to the waste generated by the industrial, and on a lesser extent, the institutional sector 65 

(Dixon and Jones, 2005; Prabakaret al., 2018). The inclusion of various ISW components is a 66 

subjective matter, where construction and demolition solid waste (C&DSW), chemicals from the 67 

medical and pharmaceutical industry and wastewater are not always included in assessment reports. 68 

The ISW contains valuable metals that could be valorised to boost economical returns of countries 69 

and societies, as well as, reduce its associated environmental burdens that stem out of mismanaged 70 

ISW components. 71 

Typically, ISW originates from chemical plants, paint industries, cement factories, thermal power 72 

plants, metallurgical plants, pharmaceutical industry, textile industries, food processing and petroleum 73 

industry. ISW can be divided into two main categories which are hazardous and non-hazardous 74 

waste. The latter is produced from food processing plants, cotton mills, paper mills and textile 75 

industries. On the other hand, hazardous waste is the waste portion produced from industries other 76 

than the aforementioned. Common examples of hazardous waste are metals, chemical, drugs, lather, 77 

electroplating and rubbers. Table 1 shows a classification of ISW with respect to type and source 78 

(BDF, 2018). 79 

The State of Kuwait (29o30’N lat. and 47o45’ E long.) is an oil-dependent state within the Gulf Council 80 

Countries (GCC) region of West Asia. The country is inhabited by 4.1 million residents of both national 81 

and expatriates within a total area of 17,818 km2. It has been reported to be the highest per capita 82 

generator of MSW with conflicted reports showing a per capita generation range between 1.55 to 5.74 kg 83 

per day according to recent estimates (World Bank, 2012, Kaza et al., 2018). Kuwait has also been 84 

reported to be the second most toxic country in the world (Whittaker-Wood, 2017). Current infrastructure 85 

doesn’t support waste management (WM) activities in an integrated manner and governmental parties at 86 

the moment are defining criteria to develop sustainable and up-to-date plans to do so (Kaza, 2018). The 87 

sole method of SW disposal in the country is unsanitary landfilling in open dumps (Al-Salem, 2009). 88 

https://www.sciencedirect.com/science/article/pii/S1364032118305719#!
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Kuwait is divided into six governorates that host major industries, mainly revolving around chemicals and 89 

petrochemicals conversion processes. The focus of the state of Kuwait has shifted in recent years 90 

towards MSW and ISW management due to the nature of the country’s industrial activities and 91 

social behaviour. The country has also embarked on various mega-scale industrial projects including 92 

the new refinery project (NRP) which is designed to process over 600 MMbpd of crude oil (Al-93 

Salem, 2015). The project has been announced to be one of the largest in the world that will host 94 

catalytic upgrading units, including fluid catalytic cracking (FCC) and atmospheric residue 95 

desulphurisation (ARDS) units using up-flow reactor technology (Richmond, 2010). Such industrial 96 

ventures will necessarily result in the accumulation of more ISW namely industrial grade catalysts. 97 

A similar situation can be observed across Europe. Countries such as France, Germany and Sweden are 98 

leaders in their respective industries, thus generate substantial amount of waste. The majority of Europe’s 99 

waste is generated from the following industrial sectors: Agriculture, mining and quarrying, plastics and 100 

rubbers, manufacturing, energy production, water distribution and treatment and construction, which all 101 

make the management  of ISW more critical. Typically, MSW constitutes 15% of the total solid waste 102 

generated across European countries, whilst ISW represents some 40% of the total waste load (Jordan and 103 

Heidorn, 2003) . On an average per capita assessment by recent published estimates of the World Bank 104 

(Kaza et al., 2018), ISW is generated in high income countries (e.g. Kuwait) by 42.62 kg per day. 105 

Comparatively, MSW and electronic waste are produced (on average) at a rate of 0.81 and 0.05 kg per 106 

capita per day, respectively. These estimates also represent some 950 kg of ISW for every 1000 Euros (€) 107 

of added value.  108 

The industry in Kuwait mostly falls under oil and gas activities. Currently, Kuwait processes about 109 

1000 M bpd of crude oil within its country limits representing a feedstock for the light derivatives 110 

and petrochemical industries. It also exports over 3.1 MM bpd of crude oil as it is one of the oldest 111 

members of the Organization of the Petroleum Exporting Countries (OPEC). Al-Muzaini (1998) 112 

stated that there were twelve industries located in Shuaiba Industrial Area (SIA), which is the largest 113 

industrial area in the Arabian Gulf hosted on the western coastal line of Kuwait. The total production 114 

of industrial wastewater alone is 23,000 m3 d-1, which carry heavy metals, organic chemicals and 115 

suspended solids and mostly ends up in the Arabian Gulf. Different technologies of treating such 116 

waste is based on physical, chemical and biological aspects (Syed, 2006). Industrial activities grew 117 

considerable in Kuwait within the past decade. Alhumoud and Al-Kandari (2008) showed in their 118 

work that a drastic increase of industrial waste was noted in Kuwait between the years 2000 (12,660 119 

tonnes) to 2005 (47,169 tonnes). Figs.1-2 show approximately the percentages of factories by type 120 

and the percentage of hazardous industrial solid waste, respectively. In waste management, one of 121 

the main classifications is identifying the waste regarding to its harshness to fall either under the 122 
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hazardous or non-hazardous categories. On an annual basis, hazardous waste formulates 18.86% of 123 

the total production of industrial waste generated in Kuwait (≈ 8,895 tonnes), including heavy oil 124 

sludge, asbestos and expired chemicals (Alhumoud and Al-Kandari, 2008, Al-Qallaf et al., 2016). 125 

Petroleum refining is considered to be the most significant pillar of the economy, due to Kuwait’s oil 126 

and gas based industry. Despite the strength of the financial return, oil and gas industries may cause 127 

various environmental problems. Petroleum waste contains high concentrations of heavy and toxic 128 

metals (Obiajunwa et al., 2002). To manage the potential side effects of petroleum waste, Mansour 129 

et al. (2016) examined petroleum-based waste such as sludge and sand. Over 17 elements including 130 

metals were recorded in their findings. The samples were derived from petroleum companies waste in 131 

Kuwait. The results reflect six samples that were dried for one day under 110ᵒC. The amount of 132 

elements was detected through the technique of X-Ray Fluorescence (XRF). The level of iron (Fe) 133 

was very high in both sludge and sand samples in addition to manganese (Mn) and calcium (Ca). 134 

Manganese was noted to be consistent with previous studies (0.25-0.28%), whereas Ca is higher 135 

(0.9-1.02%) (Table 2). A study published in Kuwait (Alshammari et al., 2008) declared that all 136 

industrial oil and gas plants plan to dispose some 240 ktpa of industrial waste, in order to achieve an 137 

integrated waste management strategy in the refining industry. To deal with this waste, they 138 

classified hazardous waste as incinerable and non-incinerable. Catalysts are one of non-incinerable 139 

hazardous waste, which contains various metals (e.g. platinum, cobalt, copper, molybdenum, iron 140 

zinc, nickel and aluminium). Typical catalysts composition is presented below for the three main 141 

operating refineries within state borders of Kuwait, namely Mina Al-Ahmadi (MAA), Mina 142 

Abdullah (MAB) and Shuibah (SHU) refineries (Table 3). 143 

According to the official European Statistics published by EUROSTAT, the EU generated a total of 58 144 

million tonnes of hazardous waste back in 2002 which includes hazardous waste from all economic 145 

sectors encompassing hazardous municipal waste (European Commission, 2005). This estimate increased 146 

to 100 million tonnes in 2016 comprising 4% of the total generated waste across the EU-28 (Euro 147 

Statistics, 2019). The UK alone generates 335 million tonnes of waste per year (mtpa) of which 225 148 

million tonnes are MSW (Lupa et al, 2011). Due to the environmental impact of waste accumulation, 149 

recycling has gained increasing interest across the EU in recent years (Beigl et al., 2004; Pires et al., 150 

2011).  151 

Even though the EU industry is different to Kuwait, heavy metal waste is still generated from 152 

different industries in the UK and Europe. Mercury (Hg) arising from the industrial sector; lead (Pb) 153 

mainly from road transport; cadmium (Cd) due to abatement technologies and chromium (Cr) are 154 

some of the most commonly generated heavy metals that pose numerous environmental and health 155 
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risks. One of the major contributors of such toxins is the waste generated from the construction 156 

industry, as well as mining and extraction (European Commision, 2002). Due to recent awareness of 157 

the negative effects of these metals, governments are devising models and implementing plans to 158 

lower the amount of heavy metal waste. For example, Pb associated waste has been reduced by 93% 159 

in the last 26 years across Europe. This was achieved by phasing out leaded petrol which currently 160 

accounts for one third of total waste emissions around the world (EEA, 2017). Despite the awareness 161 

and overall decrease in heavy metal emissions, in the last few decades, there is still a dire need for 162 

SWM, further reducing emissions and developing metal recovery methods. Regression models 163 

results, baseline studies and the development of integrated frameworks to reduce waste 164 

accumulation, have also been adopted recently in Kuwait in-light of EU strategies (Al-Salem et al., 165 

2018a). In addition, strategies to mitigate plastic solid waste (PSW) and the development of 166 

standards to govern the use of polymeric products, are also considered two main highlights of 167 

Kuwait’s recent waste management strategies development by governing bodies (Al-Salem et al., 168 

2018b). In light of the aforementioned, this review showcases the major ISW management activities 169 

and potential of valorisation within the State of Kuwait with an emphasis on spent catalysts as a 170 

waste component. The work also draws parallels with the EU in reviewing ISW activities and major 171 

valorisation techniques that can relate to the case of Kuwait, especially in the petroleum industry 172 

(e.g. spent catalysts). It critically assess the current situation of waste management within the developing 173 

world region focusing on the industrial waste component, in a novel attempt to crucially develop a way 174 

forward strategy based on best practices and future directions with major European industries. The work 175 

in this review can pave the way for the governmental parties, in both Kuwait and industrial 176 

countries, in targeting the main SW components that can reduce environmental burdens in industry. 177 

An examination of the main recovery techniques utilized in spent catalysts is also reported in this 178 

work.  179 

 180 

 181 

 182 

 183 

 184 

 185 
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2. Spent Catalysts in the Context of Industrial Waste Management and Operational Challenges 186 

Spent catalysts are non-active, used and/or regenerated catalysts (containing metals/metal oxides) that are 187 

discarded as ISW. Approximately 4% of them are petroleum refinery waste regarded largely as a 188 

hazardous waste component. The amount of spent catalyst waste is in direct correlation with the amount 189 

of fresh catalysts used and the regeneration cycles of unit operations. The spent waste can be managed via 190 

chemical/ microbial treatment, regeneration and reuse or landfilling (Akcil et al., 2015). The petroleum 191 

industry is responsible for the generation, accumulation and disposal of spent catalysts. There are three 192 

main contributing sectors to spent catalyst waste: Hydroprocessing (hydrotreating and hydrocracking), 193 

Fluid Catalytic Cracking (FCC) and reforming catalysts along with any desulphurising processes. 194 

Hydroprocessing is the name given to processes that are used to refine and treat fuels. In particular, 195 

hydrotreating is used to eliminate hetero atoms and saturated carbon-carbon bonds through removing 196 

sulphur, nitrogen, oxygen and other metals. On the other hand, hydrocracking is used to form smaller 197 

molecules by breaking carbon-carbon bonds as well as increasing the fuel yield. To carry out these 198 

processes, hydroprocessing catalysts are utilised. In recent years, there has been a substantial increase in 199 

spent catalysts, with an annual expected rise of 4.4% in hydrotreatment catalysts. The following factors 200 

are responsible for this increase: higher demands of low-sulphur fuel (via distillates hydrotreating 201 

capacity); reduction of catalyst cycles to overcome operational challenges in diesel hydrotreating units; 202 

processing of more viscous feedstock and unavailability of catalyst reactivation processes (Marafie and 203 

Stanislaus, 2008). 204 

The hydrodesulphurisation (HDS) method is used to remove sulphur form different kinds of organic 205 

materials. The catalysts utilised usually are a combination of bimetallic of Ni/Co on an aluminium oxide 206 

support. Fly ash is a residue of coal from thermal power plants, accounting up to a maximum of 20% of 207 

the original coal feed, containing catalysts as well. Approximately 750 million tonnes of fly ash are 208 

generated each year and almost all of it is disposed into landfill. HDS and fly ash disposal further 209 

contribute to the spent catalyst disposal challenge,  as well as, causing further strain on the environment 210 

(Akcil et al., 2015). To overcome this, many refineries are looking into recycling fly ash into the cement 211 

industry by potentially using it as a raw feedstock material.  212 

FCC units, used to optimise the yield of gasoline (with high octane number) from crude oil, are another 213 

major source of spent catalysts. FCC is used to convert distillates into gasoline range hydrocarbons 214 

(Gianetto et al., 1994). FCC catalyst are usually made from active silica dioxide (SiO2) and aluminium 215 

oxide (Al2O3). The leading Oman refineries (e.g. Sohar and Mina Al-Fhal Refineries) which are located in 216 

the same region as Kuwait (i.e. GCC), produce approximately 20 tonnes per day of FCC catalysts’ waste 217 

and an average of 250 kg of spent alumina waste. The majority of which is disposed of onsite or at 218 
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various disposal sites leading to environmental issues (Taha et al., 2011) . Tables 4 and 5 show the 219 

generic properties and composition of spent catalyst waste produced from Oman refineries (Al-Jabri et al., 220 

2013) FCC spent catalyst metal composition can vary across the world. Metals such as vanadium (V) and 221 

nickel (Ni) are also commonly present amongst the ones listed in Table 4.  222 

A typical FCC catalyst is a mixture of an inert matrix of kaolin, alumina and silica. Different kinds of 223 

zeolites are also applied such as types X, Y and ZSM-5. Approximately 750 ktpa of spent catalyst waste 224 

is generated worldwide through FCC processing (Kasliwal et al., 2015) In extension to this, FCC catalyst 225 

have recently been utilised for cement production and as a cement additive (for aluminate calcium 226 

cement). These catalysts contain additional cobalt metals. In India, FCC spent catalyst are also known for 227 

being used  as a refractory for furniture manufactured from clay-based kiln. The particle size ranges from 228 

60 to 100 µm (Ramezani et al., 2017). The generation and untreated disposal of such fine particles causes 229 

major environmental concerns due to wide and uncontrolled dispersion of harmful metals present in the 230 

catalysts. Recently, Su et al. (2019) showed that spent FCC displays advanced desulfurization properties. 231 

The seriousness of spent catalyst waste disposal has brought forth a new research potential for spent 232 

catalysts disposal along with recovery and reuse of metals. Amongst which molybdenum has gained 233 

substantial attention to be recovered from hydrogenation plant wastes. This transition metal is widely 234 

applied in the desulphurisation  of petrochemicals and coal-based liquids/ fuels (Kar et al., 2004). Due to 235 

the toxicity of catalysts, the United States Environmental Protection Agency (EPA) has classified all these 236 

metals and catalysts as hazardous waste (Marafi and Rana, 2016). Metals such as V, Ni, Mo and Co get 237 

leached by water and pollute the environment as well as generating harmful toxic gases such as hydrogen 238 

cyanide (Marafi and Stanislaus, 2008). The hydrotreating of spent catalysts can have a life cycle between 239 

three to four years and FCC catalysts get lost in the atmosphere daily and are offloaded daily/ fortnightly 240 

(dependent upon the use and requirement) (Chiranjeevi et al., 2016). The increased exposure, toxicity and 241 

disposal has developed numerous spent catalysts recovery methods, which are discussed in the sections 242 

hereafter. 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 



9 

 

3. Recovery Methods Used in Industrial Waste Management  251 

3.1. Hydrometallurgical and Liquid-Liquid Extraction Process 252 

The hydrometallurgical process is defined as the recovery of metals post chemical leaching in 253 

aqueous solutions aimed at recovering metals from ISW (Kentish and Stevens, 2001; Al-Qassimi et 254 

al., 2018). Hydrometallurgical pre-treatment is typically applied to recover metals such as iron, steel, 255 

copper and aluminium from electric-electronic waste (Tuncuk t al., 2012). The procedure follows 256 

three consecutive stages starting with leaching followed by purification of solution and concentrate 257 

of metals; and finally the process of recovering (electrolysis) recuperates the desired metals (Xu et 258 

al., 2007; Cerruti et al., 1998; Brandl et al., 2001).. This method has low environmental impact, 259 

capital and high metal recoveries, as well as, having the ability to be applied for small scale projects 260 

which makes it versatile and efficient. 261 

Molybdenum (Mo) and platinum (Pt) are commonly used as catalysts with other base metals, rooted 262 

(entrenched) upon catalysts pores supported on various materials such as aluminium oxide (Al2O3). 263 

Vanadium (V) and Mo are valuable metals that can be recovered from different process such as 264 

desulfurization catalyst, oil sands, slags, ashes and lean ores. Extensive research was conducted in 265 

recovering V and Mo from waste catalyst from heavy oil desulphurization in Japan, Germany and 266 

the USA. The common catalyst used in this process is MoO3 catalyst promoted with CoO on ϒ-267 

Al2O3 base. It is reported that the experimental procedure follows four main steps: Pretreatment of 268 

waste catalyst (washing with ligroin and drying), sodium chloride-water vapour roasting of the 269 

calcined catalyst, leaching of the roasted catalyst and finally, liquid-liquid extraction, stripping and 270 

precipitation (Biswas, 1985). To convert the metal values selectively (V and Mo) into the water-271 

soluble form in the second step, NaCl-H2O vapour is used to roast the catalyst (calcined at 630oC). 272 

Since the thermal hydrolysis of NaCl is much faster above its melting point (i.e. 800°C), experiments 273 

are conducted above this temperature. The roasting reaction is measured by the absorption of HCl 274 

gas in NaOH solution at pH 10.5 and correcting the pH by adding 1 M NaOH solution. Dried NaCl 275 

(400°C) is weighed and grinded in a mortar to 152 µm then placed in the furnace. The temperature 276 

of the furnace is maintained within ±10°C. When the desired temperature is reached (≈ 630oC), the 277 

saturated gas with water vapour is passed through the furnace (Biswas, 1985).  278 

 279 

 280 

 281 

 282 
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3.2. Metal Recovery Using Solvent and Liquid/Soil Extraction  283 

LIX 84-I (2-hydroxy-5-nonylacetophenone oxime) is a chelating organic extract. Solvent extraction 284 

with LIX 84-I dissolved in kerosene at an O:A phase ratio of 1 to 1, is a technique applied to catalyst 285 

leachate solutions containing up to 10 g L-1 Mo, 27 g L-1 Al and 2 g L-1 Ni to extract Mo(VI) (Park et 286 

al., 2010). The procedure is carried out to extract Mo(VI) from leached liquor with an initial pH 287 

range of 0.5-3.0. The leaching solution is typically performed after baking the spent catalyst then 288 

leaching it with sulphuric acid (H2SO4). By using a separating funnel for 5 minutes to equilibrate 289 

both aqueous and organic solutions in equal volume, the trace content of the organic component 290 

present in the solution is separated and pH is measured for raffinates. Afterwards, the raffinate is 291 

diluted to reach a suitable concentration with 1% HNO3 where the organic sample is stripped with 1 292 

M NH4OH (Park et al., 2010). The work aforementioned covered the effect of different variables on 293 

the process such as pH, concentration of LIX 84-I, different stripping reagents, phase ratio and 294 

diluents. The extraction of Mo(VI) increased with decrease in equilibrium pH and increased with an 295 

increase in LIX 84-I concentration.  296 

A different technique to recover V, Mo and Ni from waste catalyst produced from heavy gasoil 297 

hydrodesulfurization is by using caustic soda solution (Rojas-Rodríguez et al., 2012). Spent catalyst 298 

with a particle size between 1.5 and 7.3 mm is calcinated at temperatures up to 450˚C. The reactions 299 

lead to the removal of the sulphur, carbon, and the oxidation of vanadium sulphide. V and Mo are 300 

precipitated as vanadium pentoxide and molybdenum trioxide, respectively. Nickel aluminate is 301 

obtained from the residue after the removal of vanadium and molybdenum. The recovery achieved is 302 

up to 95.1% and 95.5% for the V and Mo, respectively. 303 

Solid/liquid extraction is also used to recover valuable metals from spent catalysts. The procedure 304 

published previously by Rojas-Rodríguez et al. (2012) shows that a temperature between 20 and 305 

100oC is typically employed in the hydrometallurgical extraction process, which uses citric acid for 306 

leaching purposes. Firstly, the catalyst is exposed to citric acid after washing with distilled water for 307 

30 min at 64ᵒC. Spent catalyst is also autoclaved and rewashed with de-ionized water. Al, Ni, and 308 

Mo recovery is achieved during this process with temperatures around 80ᵒC. The importance of spent 309 

catalysts is notable in several ways in catalyst preparation or for use in the metal industries. Marafi and 310 

Rana (2016) showed that catalyst derived from atmospheric desulfurization (ARDS) can be treated in five 311 

stages which were de-oiling, drying, grinding, sieving, de-coking. In fact, the spent catalyst is a mixture 312 

obtained from four reactors in fixed portions suitable for metal recovery (Marafi et al., 2007; Sheeha et 313 

al., 2013). When spent catalyst reaches the de-coking process, the catalyst is combusted (with oxygen) for 314 



11 

 

8 hours under a temperature range 300-600oC. Fig.3 shows the five stages of pretreatment of spent 315 

catalyst typically used in ARDS processes. 316 

 317 

3.3. Soda Roasting and Metal Leaching   318 

Soda roasting is used to extract high yields of V and Mo. High pressure is applied to recover Ni(CO) 319 

as a solid using NaOH. Mo and V are recovered in high percentages reaching 95% when a roasting 320 

temperature of 550oC is applied (Marafi and Stanislaus, 2011). In this process, leaching reagents which 321 

are basic in nature, such as ammonium salts, are typically used. Ammonium per-sulphate (APS) is an 322 

example of high efficiency leaching agents, due to its ability to oxidize and increase Ni and Al extraction 323 

percentages. APS is formed of 7 wt% of active oxygen which release free radicals that promote metal 324 

recovery especially for V, Ni, and Al,  however, the acidic nature minimizes the ability of extracting Mo. 325 

Valuable metals (e.g. Co, Cr, Cu, Ni, Mo, Ti, V, and W) form the majority of catalysts used in 326 

industrial sectors with an estimate of 35 wt.%. A study performed by Gaballah et al. (1994) 327 

investigated the degree of metal recovery by monitoring selective chlorination over a wide range of 328 

temperatures (300-600oC). Mixtures of chlorinated gas were able to recover 98% of Ni and Co from 329 

chloronated deposits, 98% % of Mo, Ti, and W and 80% of vandium compounds. Thermal cracking 330 

between 20-1000oC was applied on hydrodesulfurization spent catalysts followed by the process of 331 

cholorination (Gaballah et al., 1990). The volatiles were condensed through two condensers at different 332 

temperatures as shown in Fig.4. 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 
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3.4. A Note on the Spent Catalysts Generated Through Thermal Cracking and SW Upgrading  348 

Both ISW and MSW have been researched extensively over the past few decades, namely in fuel and 349 

energy recovery processes. These processes will typically utilise various types of catalysts for upgrading 350 

products and distillates such as HZSM-5 and PZSM-5 (Demirbaş, 2005). These processes also revolve 351 

around the concept of oils and hydrocarbon (HC) cracking to achieve the desired products acceptable to 352 

the marketplace and standards (Vasile et al., 2001; Chandrasekaran and Sharma, 2019a; Al-Salem, 2019). 353 

Further upgrading for the generated products can also be achieved with catalytic reforming in the 354 

petroleum downstream industry (Sharma et al., 2014; Sharma and Bansal, 2016; Sharuddin et al., 2016; 355 

Hafeez et al., 2019; Muhammad et al., 2015). All of which combined can lead to the accumulation of 356 

spent catalysts that is not typically accounted for in ISWM surveys, strategy development and studies. It 357 

is essential to understand the possible routes of spent catalysts accumulation as an ISW component within 358 

such upgrading technologies. This will enable the determination of the best course of action for future 359 

developmental plans in industrial waste mitigation and management strategies. The types of catalysts used 360 

in such processes will be the focus of this section where the aforementioned recovery techniques in the 361 

previous two sections can be successfully applied to extract valuable metals and products.  362 

A prominent example of ISW upgrading and management in petroleum downstream industries is the 363 

process of pyrolysis. This is directed (mainly) towards producing valuable oils and tars that are free of 364 

metals (Muhammad et al., 2015). Pyrolysis subjects a feedstock to inert gas deterioration at elevated 365 

temperatures typically between 500 to 800oC. Once catalytic pyrolysis is considered, some 300 to 400oC 366 

reduction in the operating temperature is achieved whilst obtaining cleaner distillates and products (Xue 367 

et al., 2015). Pyrolysis has also been applied in the past as a replacement to direct combustion for 368 

industrial waste oil treatment (Demirbaş, 2005).  369 

In an effort to study the possibility of integrating cracking technologies with the petroleum downstream 370 

industry, Chandrasekaran and Sharma (2019b) have detailed a plan to consider pyrolytic units treating 371 

Plastic Solid Waste (PSW) as a feedstock for fuel production whilst integrated to existing industrial 372 

infrastructure. Butler et al. (2011) has also proposed to integrate both thermal and catalytic pyrolysis in 373 

petroleum downstream industries to upgrade and produce gasoline and diesel; while utilising a feedstock 374 

from PSW. Catalysts that are usually used in such processes are zeolite based ones. Bargi and Williams 375 

(2002) showed the effect of using Y-zeolite on the pyrolysis of polyethylene (PE) in a two stage fixed bed 376 

reactor system. The evolved gases and oil generated consisted mainly of aliphatic compounds. Lin et al. 377 

(2012) used a hybrid FCC series catalysts to pyrolyse a mixed PSW feedstock under an operating 378 

temperature between 330 to 450oC. Oil produced was estimated to be 87 wt.% of the total product yield. 379 

Table 6 also depicts major studies conducted in recent years using catalytic pyrolysis to upgrade SW. On 380 
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the other hand, gasification technology where sub-oxygen content of carrier gas is applied in the 381 

degrading media, has also been used with aid of catalysts to upgrade various feedstock. Readers are 382 

referred to Arena (2012), Wu and Williams (2010) and Al-Salem et al. (2017) for additional content on 383 

both pyrolysis and gasification of various organic substances. 384 

 385 

3.5. Biotechnological Processes  386 

Biotechnological processes require longer leaching times to gain efficient extraction when compared 387 

to other conventional methods. They are typically directed at winning processes for copper (Cu) 388 

recovery. On the other hand, bioleaching methods are more cost effective and environmentally 389 

friendly than other conventional recovery techniques. They have been investigated on a small scale 390 

for exhaust catalysts to study their potential as a recovery process. The following reactions show a 391 

simplified mechanism for metal sulphide recovery from exhaust catalyst in a solid matrix form. 392 

Equation 1 represents direct bio-oxidation of metal sulphides onto the matrix. Equation 2 shows the 393 

chemical oxidation by iron which is generated by bio-oxidation in Equation 3. Equations 4 and 5 394 

show the formation of sulphide ion through bio-oxidation of sulphur and thiosulphate, respectively, 395 

for a complete reaction case. 396 

MeS + 
1

2
 O2 + 2H+bacteria → Me2+ + S0 + H2O      (1) 397 

MeS + Fe3+ + 
3

2
 H2O → Me2+ + Fe2+ +  

1

2
S2O3

2- + 3H+     (2) 398 

4Fe2+ +O2 +4H+bacteria → 4Fe3+ +2H2O       (3) 399 

S0 + 
3

2
 O2 +H2Obacteria → 2H+ +SO4

2−       (4) 400 

S2O3
2− +H2O + 4O2

bacteria→ 2SO4
2− +2H+       (5) 401 

In the process, the hydrocarbons (HC) from the catalysts are first removed by washing with ethyl alcohol. 402 

The microorganism culture, containing Fe/S oxidizing bacteria, are cultivated under acidic conditions and 403 

the bioleaching is carried out by incubation at 30oC.Results show that Ni and V could be successfully 404 

extracted of (Beolchini et al., 2010). This process is a cost effective and environmentally method for spent 405 

metal recoveries. 406 

 407 
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3.5.1. Precious metal recovery via AquaCat 408 

AquaCat is a method to recover metals from spent heterogeneous and homogenous catalysts  using a 409 

process based on supercritical water oxidation which converts carbonaceous material to less noxious 410 

compounds, leaving the precious metals as their oxides (Grumett, 2003). The technology was 411 

commissioned  at Johnson Matthey's Brimsdown (UK) facility in 2002 and operated until 2007 when 412 

the process and technology rights were purchased by Supercritical Fluids International (Smith et al., 413 

2013). It consists of two stages, the determination of the metal content by direct sampling and the 414 

utilisation of supercritical oxidation to convert carbon materials into less harmful compounds. This 415 

method targets organometallic-based catalysts which have historically been treated by high energy 416 

intensive methods such as combustion. In the direct sampling, the spent catalyst in the form of a wet 417 

filtered cake (between 5-500 µm particle size) is added to water and a surfactant in a vessel and 418 

agitated to form a homogenous dispersed mixture, which is analysed to determine the metal content. 419 

The water based slurry is then pumped to the feeding tank where the supercritical water oxidation 420 

takes place. Water becomes supercritical above 374oC and 221 bar, and by that stage its viscosity 421 

will be close to that of its vapour combined with a higher fluid density. At this stage, the organic 422 

substances become soluble and the water will act as a solvent for the oxidation. For homogenous 423 

catalysts, high pressure water is fed into the economiser. The catalyst is inserted directly into the 424 

reactor after oxygen injection as it does not mix with the supercritical water. The AquaCat process 425 

requires less energy and exhibits lower CO2 emissions and doesn’t give rise to SOx and NOx 426 

emissions as opposed to incineration. Direct sampling allows safer handling and treatment of 427 

hazardous materials as it can be collected in bulk (Grumett, 2003). The precious metals are recovered 428 

in a separator as depicted in the figure.  429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 
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3.5.2. Bio- hydrometallurgical Process 442 

In this process, microorganisms have the primary role of leaching instead of using reagents to do this 443 

activity. Microorganisms (e.g. bacteria and fungi such Bacillus sp., Aspergillus niger  and  Penicillium  444 

simplicissimum, Saccharomyces  cerevisiae,  Yarrowia lipolytica) interact with metals for the purpose 445 

of solubilization. Previous studies were conducted on the biological recovery of metals from sludge, 446 

fly ashes, batteries, and electronic waste (Lombardi et al., Wu and Tin, 2009; Carranza et al., 2009; 447 

Xin et al., 2009; Bayat and Sari, 2010; Zheng et al., 2009). Gaballah et al. (1994) showed that 448 

various hydrometallurgical processes are available for metal recovery. They recovered metals when 449 

catalyst roasting is the typical recovery route. After biological uptake, it was reported that chlorides 450 

of Mo and V were volatilised at 500oC whilst those of Co and Ni remained at solid state until 700oC 451 

was reached. During bio-uptake hazardous compounds such as HCL, H2SO4 and alkalis were 452 

separated from valuable metals (e.g. Mo, V and Al).  453 

 454 

3.5.3. Pyrometallurgical process 455 

The pyrometallurgical process is a nominal choice when physical properties are negligible. It 456 

recovers metals from industrial waste after  thermal treatment (smelting, roasting, and refining). In 457 

synthesis gas production, especially in low temperature processes of carbon monoxide conversion 458 

with steam to form hydrogen for the production of ammonia or methanol, CuO-ZnO-Al2O3 catalyst 459 

was considered by Malecki and Gargul (2018). The spent catalyst could be a valuable source of 460 

metal using pyrometallurgical and hydrometallurgical processes to recover more than 66% of the 461 

copper in metal form and 70% of zinc as ZnO. The objective in the pyrometallurgical process is to 462 

maximize the yields of copper (Cu) and zinc (Zn) extracted from the spent catalyst in the recovery 463 

process so test melting is initially performed. Slag-forming additives are needed in the recovery 464 

process to obtain the lowest melting point of the slag which s also has a meaningful effect on the 465 

recovery of Cu to alloy and Zn to dust. In the additives CaO, SiO2 and Na2O were shown to give the 466 

lowest melting point when the components were in the same weight percentage. The catalyst was 467 

loaded into a graphite crucible and placed in an induction furnace at a temperature range of 1100-468 

1300ᵒC to obtain the maximum stripping of zinc and the formation of liquid copper. Coal is added to 469 

the process to reduce CuO and ZnO. After melting, the liquid products were cooled, separated and 470 

weighed for chemical analysis. On the other hand, the hydrometallurgical method consists of two main 471 

processes, leaching and filtration. The zinc oxide and copper oxide leaching process follows two stages: 472 

leaching in NaOH solution (temperature 75ᵒC for 120 min, NaOH concentration = 200g dm-3, 1/s = 10) 473 

followed by leaching in H2SO4 solution (temperature 60ᵒC, for 120 min, H2SO4 concentration = 180 g dm-474 
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3, 1/s = 10). Zinc has high resistance to both acid and alkaline so after leaching an insoluble residue is 475 

formed, which was filtered to separate the precipitate. The resulting  yield of copper in the solution is 476 

about 98% with 62% zinc in the alkaline solution. 477 

 478 

3.5.4. Recovery of Catalysts from Automotive Catalyst Deposits 479 

The use of platinum group metals in automotive catalysts is widespread. There are numerous reports in 480 

the literature on the fate of these metals in the environment and on human health from countries around 481 

the world (Khan and Strand, 2018; Sen et al., 2013; Gao et al., 2012; Spaziani et al., 2008). Road dust 482 

containing these metals has been assessed as an anthroprogenic resource and methods have been 483 

established to recover the spent catalyst. Methods include leach solutions such as aqua regia to solubilise 484 

the metals as well as a microwave-assisted leaching method (Yong et al., 2003).The microwave approach 485 

gave 80% metals recovery, with the leach time reduced from 2 hours to 15 minutes using 50% (aq.) 486 

diluted aqua regia compared to conventional acid leaching to give potentially a more biocompatible 487 

leachate. Authors have used aqua regia leachates rich in platinum group metals as feedstock for bacteria 488 

such as Desulfovibrio desulfuricans, Cupriavidus metallidurans or Escherichia coli (Yong et al., 2003; 489 

Murray et al., 2017) which reduces the soluble metals to cell-bound insoluble base metals, for example 490 

Pd(II) to Pd(0)). It was reported that bacteria immobilised in a biofilm preloaded with Pd(0) loaded in a 491 

flow-through electrobioreactor performed better as chemical catalysts for the reductive recovery of 492 

precious metals when compared to free cells with a recovery of spent automotive catalysts of up to 90% 493 

efficiency at a residence time of 15 minutes. Model solutions were found to give better results than real 494 

automotive leachate and from crushed spent automotive catalyst due to interference by other 495 

contaminants. The bacterial Pd(0) functioned as a superior chemical catalyst in a test reaction which 496 

liberated hydrogen from hypophosphite (Yong et al., 2002). These catalysts have also been tested as 497 

cheap nanocatalysts for fuel cell electrodes (Yong et al., 2010).  498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 
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3.5.5. Recovery of catalysts from in situ heavy oil upgrading 508 

In situ methods to recover heavy oil fractions are gaining momentum. These are largely based on 509 

combustion methods but in situ catalytic upgrading process such as CAPRI (Catalytic Petroleum 510 

Recovery In situ) are employed to further improve the upgrading of the heavy oil. The catalyst is typically 511 

packed into an annulus around the horizontal production well, however some researchers have 512 

investigated the use of dispersed catalysts to improve the issues of deactivation associated with packed 513 

bed catalysis (Al-Marshed et al., 2016). The recovery of spent catalyst from in situ recovery processes 514 

poses challenges. The catalyst can be retained in the formation and it has been suggested that dispersed 515 

catalyst injected in the form of nanoparticles may either agglomerate into larger particles or adsorb to the 516 

rock surface especially at the temperature and pressure conditions. To negate this ultradispersed 517 

suspensions with high stability and selectivity are needed (Guo et al., 2016). Spent dispersed catalysts can 518 

be recovered from the oil using conventional demetallisation processes that are used to remove metals 519 

from heavy oil. Demetallisation processes are valuable in their own right as metal recovery processes; a 520 

third of all vanadium produced by Russia stems from demetallisation of heavy oil and 8% of vanadium 521 

world production comes from oil feedstocks. Demetallisation takes place in the electrostatic desalter at a 522 

refinery although this processes is typically modified to deal with stable organometallics with electrolysis 523 

cells and polymeric sorbents being used to recover metals (Magomedov et al., 2015).  524 

 525 

 526 

 527 

 528 

 529 

 530 
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 532 
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4. Regulations Governing Spent Catalysts Handling and Industrial Waste 536 

4.1. European Union (EU) Regulations 537 

The European Union (EU) has some of highest waste management standards in the world. The EU Waste 538 

Management regulations and directives EC 98/2008 and EC 1013/2006  aim to protect the environment 539 

and human health through highlighting the importance and emphasising the application of waste recovery 540 

and recycling techniques (EC, 2006; EC 2008). These regulations also govern the shipment and handling 541 

of ISW and spent catalysts trade between EU countries. To implement this, the original waste producer 542 

must pay for the costs of proper and adequate waste management as well as introduce extended producer 543 

responsibility. This is where the manufactureraccepts and disposes of products that are returned after use. 544 

The producers of waste are required to treat the waste before disposing or have it professionally tested; 545 

this is tracked by regular inspections (EU 2008).  546 

EU regulations for waste have been divided into various sections. The Directive of landfill waste (EC/35) 547 

aims to reduce and prevent disposal as much as possible, to have little to no impact on surface water, 548 

groundwater, soil or human health. To achieve this, specific guidelines have been set. EU landfill sites are 549 

usually split into three different sections: hazardous waste, non-hazardous waste and inert waste (non-550 

incinerable/ decomposable waste). Biodegradable waste is discouraged and used tyres, liquid waste, 551 

flammable waste, explosive or corrosive waste are not allowed in landfill sites. Only treated waste can 552 

enter landfill sites. This is tracked by issuing permits and regular operator checks (EU, 2000). 553 

Hazardous waste regulations were set by the European Economic Community and the Basel Convention. 554 

This regulates the boundaries for which the hazardous waste disposal must abide by. It consists of three 555 

main sections: minimising transported quantities, treatment and disposal of wastes as close to the place of 556 

generation and to prevent/ minimise the generation of waste from the beginning (Community 1993). Due 557 

to the recent increase in ISW generation, the waste safety and guidelines have become more severe. EU 558 

has also given formal consent for a ban prohibiting the export of waste to non-OEDC countries a while 559 

ago (Parties and This, 1987). 560 

To control industrial emission, the EU has devised a framework of interconnected permitting. This is 561 

where the emission permit must take into consideration the industrial plant’s whole environmental 562 

performance (from start up to shut down) and to avoid the pollution shift between mediums (such as air, 563 

water and land). Priority is given to prevent pollution by intervening at the generation point and ensuring 564 

efficient and sustainable use/ management of natural resources. This legislation covers the following 565 

industrial sectors: energy, metal production/ processing, minerals, chemicals and waste management. This 566 

allows the public to be given an early opportunity to contribute to the permitting process and installations 567 

(EU 2004). 568 
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The European Catalysts Manufacturers Association has set guidelines for the management of spent 569 

catalysts, which was established back in 1993. The association abides by the European Chemical Industry 570 

Council. The guidelines state that whilst the catalyst is in use, the user is required to pay attention to 571 

precautions and safety measures that will be required once the catalyst has been deactivated and devise an 572 

adequate disposal plan. The hazardous proprieties of the catalyst should be well known to the user to help 573 

aid the disposal plan. Once the catalyst has been discharged it can either be reused (via off-site 574 

regeneration) or the material can be discarded recovering the metals. Regeneration of a catalyst usually 575 

involves international movement, which has to be carried out by adhering to the EU Waste Transportation 576 

Act (EC, 2006). According to the Organisation for Economic Co-operation and Development (OECD) 577 

decision, transportable waste has been coded, Green and Amber. The Green coding includes wastes that 578 

have low risk for humans and the environment and thus fall under normal commercial transactions. The 579 

Amber code refers to waste that has sufficient risk to borderline under the satisfaction of the OECD 580 

control. This requires advance notice for all the concerned authorities along with a tracking document. A 581 

Green coded spent catalyst can be treated as Amber should it contain impurities or contaminates that 582 

might prevent recovery (Cefic Group, 2001). The EU also promotes the activities of its governing agency 583 

of Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) which adopts 584 

regulations to protect health and environment of EU countries. Chemical substances and metals recovered 585 

from ISWM are approved through this program for trading amongst EU countries (EU REACH, 2006). 586 

 587 
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4.2. Governing Standard Within the State of Kuwait and Lessons Learnt  599 

The governing body within the State of Kuwait concerning the handling and disposal of waste is the 600 

Kuwait Environment Public Authority (KEPA). One of the first things that comes to mind concerning the 601 

issue of ISWM and waste standards within the state, is the fact that various components of waste fall 602 

under the jurisdictions and responsibilities of various sectors. A prime example is the fact that MSW is 603 

managed by Kuwait Municipality (KM), whereas ISW with the exception of oil and gas industries fall 604 

under the responsibilities of the Public Authority for Industry (PAI). Each petroleum refinery is 605 

contracted to mange its own waste through national landfill sites, and industrial wastewater is managed by 606 

a different sector of the government through the Ministry of Public Works (MOPW). This trend goes on 607 

to create major controversy among various parties in Kuwait, and there exist no governing body to liaise 608 

between all responsible parties. On the other hand, the regulations that KEPA have developed are being 609 

revised and improved constantly. The current regulations within the state also present major gaps and are 610 

not descriptive enough. Major technical and scientific input is required to have a comprehensive 611 

regulation by KEPA for governing WM activities within Kuwait. Generally, the management of SW is 612 

governed and regulated by Law No. 16/1996 and by-law Directive 210/2001 (Kuwait Al Youm, 2001). 613 

These laws assign waste in Kuwait to the categories of hazardous and non-hazardous based on the Basel 614 

Convention (BC, 1989). Private and cottage industries in Kuwait have to abide by these regulations by 615 

law. In addition, KEPA Directive (law) No. 5/2016 identifies various definitions and aspects with regards 616 

to WM, and law No. 6/2017 sets regulations for managing waste generated from medical and hazardous 617 

sources. It also regulates radioactive waste within the country (Kuwait Al Youm, 2016; 2017). By 618 

comparison to the case of the EU, and examining the aforementioned generation trends of ISW in Kuwait, 619 

a number of recommendations can be withdrawn as a strategy for the country. The State of Kuwait can 620 

benefit immensely by supporting the establishment of governmental and private industries alike, in 621 

creating a market for ISW valorisation. These industries also can benefit immensely and within state 622 

borders by trading recovered metals and chemical from ISW namely spent catalysts. The regulations in 623 

Kuwait can also start to accommodate such industrial practice, and one governing body can be 624 

responsible for managing the various waste management aspects in the country, instead of the current 625 

situation that creates confusion between waste generating sectors. The sustainability of the development 626 

of such practice is  also something that can’t be neglected. The sole method of disposal for ISW in Kuwait 627 

is landfilling in a governmental site. This is a major cause of land loss, generation of environmental and 628 

social associated burdens and land reclamation/rehabilitation costs. These issues can be eliminated by 629 

establishing both the appropriate standards and industry to govern ISW, more including spent catalyst 630 

which Kuwait consumes by a large amount due to its industrial nature.  631 
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Conclusion  632 

Improper management of industrial solid waste is beginning to be recognised by many business sectors 633 

However, the action to address the problem in an efficient and sustainable manner is yet to be established. 634 

Manufacturers are gradually shifting towards the reuse of spent catalyst and have developed recovery 635 

methods such as hydrometallurgical and liquid-liquid extraction process (chemical leaching method post 636 

metal recovery, commonly used to recover Mo and V); Solvent and Liquid/soil extraction (solvent 637 

extraction with LIX-84-1 dissolved in kerosene, commonly used to recover V, Mo and Ni); soda roasting 638 

and metal leaching (used to extract V and Mo at high percentages but at the expense of a temperature 639 

range of 500oC – 700oC). Biotechnological processes are also commonly used to extract V, Mo and Ni, at 640 

the expense of longer leaching time however, these methods prove to be more cost effective than 641 

conventional ones (including thermal cracking, gasification and pyrolysis). All of these proposed and 642 

applied processes mostly aim at a small number of precious metals, making them limited to the recovery 643 

of catalysts that may contain V, Mo and Ni. Other valuable metals such as Pt, Al, Zi, may not be 644 

compatible. Legal guidelines across Europe and Kuwait has set strict guidelines in regard to ISW and its 645 

management, based on the hazardous properties of catalysts. Regeneration of spent catalyst/ metal 646 

recovery require international transport and numerous post and pre-treatment steps. The transport across 647 

different borders is one the biggest drawbacks as different countries have different rules, regulations and 648 

standards thus making the management plan harder to execute and successfully implement. 649 

 650 
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Abbreviations 658 

Al2O3;  Aluminium Oxide 659 

ARDS;  Atmospheric Desulfurization 660 

Cd;  Cadmium 661 

Cr;  Chromium 662 

EC;   European Commission 663 

EU;   European Union 664 

EU;   European Union  665 

FCC;  Fluid Catalytic Cracking 666 

GCC;  Gulf Council Countries 667 

HDS;   Hydrodesulphurisation 668 

ISW;  Industrial Solid Waste 669 

KEPA;  Kuwait Environment Public Authority 670 

KM;  Kuwait Municipality 671 

Mo;  Molybdenum 672 

MOPW; Ministry of Public Works 673 

MSW;  Municipal Solid Waste 674 

Ni;  Nickel   675 

OECD;  Organisation for Economic Co-operation and Development 676 

OPEC;  Organization of the Petroleum Exporting Countries 677 

PAI;  Public Authority for Industry 678 

Pb;  Lead 679 

PE;  Polyethylene 680 

PSW;  Plastic Solid Waste 681 

Pt;  Platinum 682 

SiO2;   Silica Dioxide 683 

SWM;  Solid Waste Management 684 

V;  Vanadium 685 
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