2,086 research outputs found

    Population Balance Model of Heat Transfer in Gas-Solid Processing Systems

    Get PDF

    Utility of serological markers in inflammatory bowel diseases: Gadget or magic?

    Get PDF
    The panel of serologic markers for inflammatory bowel diseases (IBD) is rapidly expanding. Although anti-Saccharomyces cerevisiae antibodies (ASCA) and atypical perinuclear antineutrophil cytoplasmic antibodies (P-ANCA) remain the most widely investigated, an increasing amount of experimental data is available on newly discovered antibodies directed against various microbial antigens. The role of the assessment of various antibodies in the current IBD diagnostic algorithm is often questionable due to their limited sensitivity. In contrast, the association of serologic markers with disease behavior and phenotype is becoming increasingly well-established. An increasing number of observations confirms that patients with Crohn's disease expressing multiple serologic markers at high titers are more likely to have complicated small bowel disease (e.g. stricture and/or perforation) and are at higher risk for surgery than those without, or with low titers of antibodies. Creating homogenous disease sub-groups based on serologic response may help develop more standardized therapeutic approaches and may help in a better understanding of the pathomechanism of IBD. Further prospective clinical studies are needed to establish the clinical role of serologic tests in IBD

    Stochastic self-assembly of incommensurate clusters

    Full text link
    We examine the classic problem of homogeneous nucleation and growth by deriving and analyzing a fully discrete stochastic master equation. Upon comparison with results obtained from the corresponding mean-field Becker-D\"{o}ring equations we find striking differences between the two corresponding equilibrium mean cluster concentrations. These discrepancies depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass incommensurability arises, a single remainder particle can "emulsify" or "disperse" the system by significantly broadening the mean cluster size distribution. This finite-sized broadening effect is periodic in the total mass of the system and can arise even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. For such finite ratios we show that homogeneous nucleation in the limit of large, closed systems is not accurately described by classical mean-field mass-action approaches.Comment: 5 pages, 4 figures, 1 tabl

    EXPERIENCES WITH THE PREPARATION AND RATING OF CONCENTRATED SUSPENSIONS

    Get PDF

    Mean First Passage Time in Periodic Attractors

    Full text link
    The properties of the mean first passage time in a system characterized by multiple periodic attractors are studied. Using a transformation from a high dimensional space to 1D, the problem is reduced to a stochastic process along the path from the fixed point attractor to a saddle point located between two neighboring attractors. It is found that the time to switch between attractors depends on the effective size of the attractors, τ\tau, the noise, Ï”\epsilon, and the potential difference between the attractor and an adjacent saddle point as:  T=cτexp⁥(τϔΔU) ~T = {c \over \tau} \exp({\tau \over \epsilon} \Delta {\cal{U}})~; the ratio between the sizes of the two attractors affects ΔU\Delta {\cal{U}}. The result is obtained analytically for small τ\tau and confirmed by numerical simulations. Possible implications that may arise from the model and results are discussed.Comment: 14 pages, 3 figures, submitted to journal of physics

    Influence of breakage on crystal size distribution in a continuous cooling crystallizer

    Get PDF
    A detailed two-dimensional population balance model of continuous cooling crystallization, involving nucleation, growth of the two characteristic crystal facets and binary breakage along the length of needle-shape crystals is presented and analysed. The population balance equation is reduced into a moment equation model of the joint moments of crystal size variables. The dynamic behaviour of the crystallizer and the effects of kinetic and process parameters on the characteristics of crystal size distribution are studied by simulation. The observations and analysis have revealed that there exist strong interactions between the breakage and the product properties
    • 

    corecore