331 research outputs found
Simulation of Claylike Colloids
We investigate properties of dense suspensions and sediments of small
spherical silt particles by means of a combined Molecular Dynamics (MD) and
Stochastic Rotation Dynamics (SRD) simulation. We include van der Waals and
effective electrostatic interactions between the colloidal particles, as well
as Brownian motion and hydrodynamic interactions which are calculated in the
SRD-part. We present the simulation technique and first results. We have
measured velocity distributions, diffusion coefficients, sedimentation
velocity, spatial correlation functions and we have explored the phase diagram
depending on the parameters of the potentials and on the volume fraction.Comment: 20 pages, 14 figure
Shear Viscosity of Clay-like Colloids in Computer Simulations and Experiments
Dense suspensions of small strongly interacting particles are complex
systems, which are rarely understood on the microscopic level. We investigate
properties of dense suspensions and sediments of small spherical Al_2O_3
particles in a shear cell by means of a combined Molecular Dynamics (MD) and
Stochastic Rotation Dynamics (SRD) simulation. We study structuring effects and
the dependence of the suspension's viscosity on the shear rate and shear
thinning for systems of varying salt concentration and pH value. To show the
agreement of our results to experimental data, the relation between bulk pH
value and surface charge of spherical colloidal particles is modeled by
Debye-Hueckel theory in conjunction with a 2pK charge regulation model.Comment: 15 pages, 8 figure
Structure and Sodium Ion Dynamics in Sodium Strontium Silicate Investigated by Multinuclear Solid-State NMR
© 2016 American Chemical Society.The high oxide ion conductivity of the proposed sodium strontium silicate ion conductors Sr0.55Na0.45SiO2.775 (>10-2 S·cm-1 at 525 °C) and its unusual alkali metal substitution strategy have been extensively questioned in the literature. Here, we present a comprehensive understanding of the structure of this material using a combination of XRD and multinuclear 17O, 23Na, and 29Si solid-state NMR spectroscopy data and a detailed investigation of the Na ion dynamics by high temperature 23Na NMR line shape analysis and relaxation rates measurements. Both 23Na and 29Si NMR spectra demonstrate the absence of Na doping in strontium silicate SrSiO3 and the presence of an amorphous phase identified as Na2O·2SiO2 glass as the Na-containing product. Devitrification at 800 °C yields crystallization of the Na2O·2SiO2 glass into the known crystalline α-Na2Si2O5 phase which was positively identified by its XRD pattern and the extensive and clear 17O, 23Na, and 29Si NMR fingerprints. High temperature 23Na NMR reveals that the Na ions are mobile in the Na2O·2SiO2 amorphous component below its glass transition temperature (∼450 °C). In contrast, 23Na NMR data obtained on the crystalline α-Na2Si2O5 shows limited Na dynamics below ∼650 °C, and this result explains the large discrepancy in the conductivity observed in the literature which strongly depends on the thermal history of the Sr0.55Na0.45SiO2.775 material. These insights demonstrate that the high conductivity observed in Sr0.55Na0.45SiO2.775 is due to Na conduction in the Na2O·2SiO2 glass, and this motivates the quest for the discovery of low temperature fast ion conductors in noncrystalline solids
Migration of dissolved organic carbon in biochars and biochar-mineral complexes
The objective of this work was to determine the contribution of dissolved organic carbon (DOC) from a biochar mineral complex (BMC), so as to better understand the interactions between DOC, biochar, clay, and minerals during thermal treatment, and the effects of BMC on amended soils. The BMC was prepared by heating a mixture of a H3PO4-treated saligna biochar from Acacia saligna, clays, other minerals, and chicken manure. The BMC was applied to a sandy loam soil in Western Australia, where wheat was grown. Liquid chromatography-organic carbon detection (LC-OCD) tests were carried out on water extracts from the untreated biochar, the BMC, the BMC-amended soil, and on a control soil to measure the DOC concentration. LC-OCD tests provide a fingerprint of the DOC, which allows the fractions of DOC to be determined. Thermal processing enhanced the reaction of the A. saligna biochar with manure, clays and minerals, and affected the distribution of the DOC fractions. Notably, the process leads to immobilization of hydrophobic DOC and to an increase in the concentration of low-molecular-weight neutrals in the BMC. The application of the BMC to soil increases the DOC in the amended soil, especially the biopolymer fraction
Characterization and stability studies of emulsion systems containing pumice
Emulsions are the most common form of skin care products. However, these systems may exhibit some instability. Therefore, when developing emulsions for topical application it is interesting to verify whether they have suitable physical and mechanical characteristics and further assess their stability. The aim of this work was to study the stability of emulsion systems, which varied in the proportion of the emulsifying agent cetearyl alcohol (and) sodium lauryl sulfate (and) sodium cetearyl sulfate (LSX), the nature of the oily phase (decyl oleate, cyclomethicone or dimethicone) and the presence or absence of pumice (5% w/w). While maintaining the samples at room temperature, rheology studies, texture analysis and microscopic observation of formulations with and without pumice were performed. Samples were also submitted to an accelerated stability study by centrifugation and to a thermal stress test. Through the testing, it was found that the amount of emulsifying agent affects the consistency and textural properties such as firmness and adhesiveness. So, formulations containing LSX (5% w/w) and decyl oleate or dimethicone as oily phase had a better consistency and remained stable with time, so exhibited the best features to be used for skin care products
- …