25 research outputs found

    Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host

    Get PDF
    International audienceBACKGROUND: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. METHODOLOGY/PRINCIPAL FINDINGS: The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. CONCLUSIONS/SIGNIFICANCE: Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein

    How to make tubular crystals by reconstitution of detergent-solubilized Ca2(+)-ATPase.

    Get PDF
    In an attempt to better define the parameters governing reconstitution and two-dimensional crystallization of membrane proteins, we have studied Ca2(+)-ATPase from rabbit sarcoplasmic reticulum. This ion pump forms vanadate-induced crystals in its native membrane and has previously been reconstituted at high lipid-to-protein ratios for functional studies. We have characterized the reconstitution of purified Ca2(+)-ATPase at low lipid-to-protein ratios and discovered procedures that produce long, tubular crystals suitable for helical reconstruction. C12E8 (n-dodecyl-octaethylene-glycol monoether) was used to fully solubilize various mixtures of lipid and purified Ca2(+)-ATPase, and BioBeads were then used to remove the C12E8. Slow removal resulted in two populations of vesicles, and the proteoliposome population was separated from the liposome population on a sucrose density gradient. These proteoliposomes had a lipid-to-protein ratio of 1:2, and virtually 100% of molecules faced the outside of vesicles, as determined by fluorescein isothiocyanate labeling. Cycles of freeze-thaw caused considerable aggregation of these proteoliposomes, and, if phosphatidyl ethanolamine and phosphatidic acid were included, or if the bilayers were doped with small amounts of C12E8, vanadate-induced tubular crystals grew from the aggregates. Thus our procedure comprised two steps-reconstitution followed by crystallization-allowing us to consider mechanisms of bilayer formation separately from those of crystallization and tube formation

    TSPO ligands stimulate ZnPPIX transport and ROS accumulation leading to the inhibition of P. falciparum growth in human blood

    Get PDF
    International audienceAfter invading red blood cells (RBCs), Plasmodium falciparum (Pf) can export its own proteins to the host membrane and activate endogenous channels that are present in the membrane of RBCs. This transport pathway involves the Voltage Dependent Anion Channel (VDAC). Moreover, ligands of the VDAC partner TranSlocator PrOtein (TSPO) were demonstrated to inhibit the growth of the parasite. We studied the expression of TSPO and VDAC isoforms in late erythroid precursors, examined the presence of these proteins in membranes of non-infected and infected human RBCs, and evaluated the efficiency of TSPO ligands in inhibiting plasmodium growth, transporting the haem analogue Zn-protoporphyrin-IX (ZnPPIX) and enhancing the accumulation of reactive oxygen species (ROS). TSPO and VDAC isoforms are differentially expressed on erythroid cells in late differentiation states. TSPO2 and VDAC are present in the membranes of mature RBCs in a unique protein complex that changes the affinity of TSPO ligands after Pf infection. TSPO ligands dose-dependently inhibited parasite growth, and this inhibition was correlated to ZnPPIX uptake and ROS accumulation in the infected RBCs. Our results demonstrate that TSPO ligands can induce Pf death by increasing the uptake of porphyrins through a TSPO2–VDAC complex, which leads to an accumulation of ROS

    Purification of Membrane Proteins by Affinity Chromatography with On-Column Protease Cleavage.

    No full text
    A protocol is described for the isolation of recombinant polyhistidine-tagged membrane proteins from overexpressing Escherichia coli cells. The gene encoding a target membrane protein is cloned into an expression plasmid and then introduced into E. coli cells for overexpression. Membranes from bacterial cells are isolated and the tagged target membrane protein is solubilized in detergent and subsequently bound to an affinity matrix. Tagged proteins are commonly eluted by an excess of a solute that competes for the binding to the matrix. Alternatively, amino acid sequence-specific proteases can be used to cleave off the affinity purification tag directly on the purification column (i.e., on-column cleavage). This selectively releases the target protein and allows subsequent elution. Importantly, this step represents an additional purification step and can significantly increase the purity of the isolated protein
    corecore