721 research outputs found

    Characteristics of hingeless rotors with hub moment feedback controls including experimental rotor frequency response, Volume 1

    Get PDF
    Wind tunnel tests to determine the dynamic characteristics of hingeless rotors with hub moment feedback controls and to acquire experimental hingeless rotor transfer functions are discussed. Rotor transfer functions were calculated from data acquired during open loop frequency response tests. The transfer functions are linear and present the rotor longitudinal and lateral frequency responses to collective pitch, longitudinal cyclic pitch, and lateral cyclic pitch. The theoretical analysis was based on the rigid blade flapping model coupled with appropriate control system and cyclic pitch actuator equations of motion

    Research program to determine rotor response characteristics at high advance ratios Final report

    Get PDF
    Stability and response characteristics of directly controlled rigid rotors at high advance ratios and correlation of mathematical model with wind tunnel test dat

    A Microstructure Sensitive Approach for the Prediction of the Creep Behaviour and Life under Complex Loading Paths

    Get PDF
    The prediction of the creep behaviour and life of components of aeronautic engines like high pressure turbine blades is still a challenging issue due to non-isothermal loadings. Indeed, certification procedures of turboshaft engines for helicopters consist of complex thermomechanical histories, sometimes including short and very high temperature excursions close to the γ’-solvus (T~1200°C) of the blade alloy. A better design of those components could be gained using a model that takes into account non-isothermal loadings inducing microstructural changes. Most of the commonly used models consider only a nearly constant (or slowly evolving) microstructure, i.e. far from the rapid microstructure evolutions encountered during close γ’-solvus overheatings where a rapid dissolution/precipitation of the γ’-phase and fast recovery mechanisms were observed by Cormier et al. (2007b). A new constitutive modelling approach was hence recently proposed in a crystal viscoplasticity framework to capture the transient effects of such rapid microstructure evolutions on the creep behaviour and life (Cormier and Cailletaud (2010a)). In this article, an updated version of this model is detailed. Special attention will be paid to (i) the effect of the accumulated plastic strain on the microstructure evolution, (ii) the introduction of an additional damage formulation, and (iii) the creep strain at failure. The performances of the model are illustrated on the basis of isothermal or complex non-isothermal creep experiments performed on nearly [001] oriented samples

    On the sintering of single crystal rutile

    Full text link
    The sintering of single crystal rutile spheres has been studied in air and in reducing atmosphere in the temperature range 900 to 1350[deg]C. The rate of sintering is characterized by two stages: a slow initial one, followed by a more rapid period. Simultaneously with the change in sintering rate, flat surfaces develop on the rutile spheres. It is suggested that this phenomenon is responsible for the change in sintering rate.From qualitative and quantitative evidence, it is concluded that surface diffusion is the transport process controlling sintering under the conditions of the present studies. The results of this investigation are at variance with those of previous studies. Possible reasons for the discrepancy are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33417/1/0000818.pd

    Induced Anticlinic Ordering and Nanophase Segregation of Bow-Shaped Molecules in a Smectic Solvent

    Full text link
    Recent experiments indicate that doping low concentrations of bent-core molecules into calamitic smectic solvents can induce anticlinic and biaxial smectic phases. We have carried out Monte Carlo (MC) simulations of mixtures of rodlike molecules (hard spherocylinders with length/breadth ratio Lrod/D=5L_{\rm rod}/D = 5) and bow- or banana-shaped molecules (hard spherocylinder dimers with length/breadth ratio Lban/D=5L_{ban}/D = 5 or 2.5 and opening angle ψ\psi) to probe the molecular-scale organization and phase behavior of rod/banana mixtures. We find that a low concentration (3%) of Lban/D=5L_{ban}/D = 5 dimers induces anticlinic (SmCA_A) ordering in an untilted smectic (SmA) phase for 100ψ<150100^\circ \le \psi < 150^\circ. For smaller ψ\psi, half of each bow-shaped molecule is nanophase segregated between smectic layers, and the smectic layers are untilted. For Lban/D=2.5L_{ban}/D = 2.5, no tilted phases are induced. However, with decreasing ψ\psi we observe a sharp transition from {\sl intralamellar} nanophase segregation (bow-shaped molecules segregated within smectic layers) to {\sl interlamellar} nanophase segregation (bow-shaped molecules concentrated between smectic layers) near ψ=130\psi = 130^\circ. These results demonstrate that purely entropic effects can lead to surprisingly complex behavior in rod/banana mixtures.Comment: 5 pages Revtex, 7 postscript figure

    Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari: Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data.

    Get PDF
    Made available in DSpace on 2018-07-01T01:24:28Z (GMT). No. of bitstreams: 1 is11037.pdf: 1076777 bytes, checksum: 4811175a308bfd44ad981b7278e10155 (MD5) Previous issue date: 2013-02-27bitstream/item/179312/1/is11037.pd

    Mutations in thyroid hormone receptor α1 cause premature neurogenesis and progenitor cell depletion in human cortical development

    Get PDF
    Mutations in the thyroid hormone receptor α 1 gene (THRA) have recently been identified as a cause of intellectual deficit in humans. Patients present with structural abnormalities including microencephaly, reduced cerebellar volume and decreased axonal density. Here, we show that directed differentiation of THRA mutant patient-derived induced pluripotent stem cells to forebrain neural progenitors is markedly reduced, but mutant progenitor cells can generate deep and upper cortical layer neurons and form functional neuronal networks. Quantitative lineage tracing shows that THRA mutation-containing progenitor cells exit the cell cycle prematurely, resulting in reduced clonal output. Using a micropatterned chip assay, we find that spatial self-organization of mutation-containing progenitor cells in vitro is impaired, consistent with down-regulated expression of cell–cell adhesion genes. These results reveal that thyroid hormone receptor α1 is required for normal neural progenitor cell proliferation in human cerebral cortical development. They also exemplify quantitative approaches for studying neurodevelopmental disorders using patient-derived cells in vitro

    Current effects on neck growth in the sintering of copper spheres to copper plates by the pulsed electric current method

    Full text link
    The effect of a pulsed dc on the sintering of copper spheres to copper plates was investigated. It was shown that the current had a marked effect on neck growth between the spheres and the plates. The enhancement of sintering under the effect of the current was attributed to electromigration. Microstructural observations on fracture surfaces of necks formed under high currents showed considerable void formation. It was also observed that the current resulted in increased evaporation and the formation of bunched evaporation steps. Formation of these steps and their location relative to the neck were consistent with current density distributions. The results of this investigation provide direct evidence for the role of the current in the sintering in the pulse electric current sintering method. (c) 2007 American Institute of Physics

    Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans

    Get PDF
    Whole genome expression microarrays can be used to study gene expression in blood, which comes in part from leukocytes, immature platelets, and red blood cells. Since these cells are important in the pathogenesis of stroke, RNA provides an index of these cellular responses to stroke. Our studies in rats have shown specific gene expression changes 24 hours after ischemic stroke, hemorrhage, status epilepticus, hypoxia, hypoglycemia, global ischemia, and following brief focal ischemia that simulated transient ischemic attacks in humans. Human studies show gene expression changes following ischemic stroke. These gene profiles predict a second cohort with >90% sensitivity and specificity. Gene profiles for ischemic stroke caused by large-vessel atherosclerosis and cardioembolism have been described that predict a second cohort with >85% sensitivity and specificity. Atherosclerotic genes were associated with clotting, platelets, and monocytes, and cardioembolic genes were associated with inflammation, infection, and neutrophils. These gene profiles predicted the cause of stroke in 58% of cryptogenic patients. These studies will provide diagnostic, prognostic, and therapeutic markers, and will advance our understanding of stroke in humans. New techniques to measure all coding and noncoding RNAs along with alternatively spliced transcripts will markedly advance molecular studies of human stroke
    corecore