587 research outputs found

    Early concepts and charts of ocean circulation

    Get PDF
    Charts of ocean currents from the late nineteenth century show that already by then the patterns of surface circulation in regions away from polar latitudes were well understood. This fundamental knowledge accumulated gradually through centuries of sea travel and had reached a state of near correctness by the time dedicated research cruises, full-depth measurements and the practical application of the dynamical method were being instituted. Perhaps because of the foregoing, many of the pioneering works, critical to establishing what the upper-level circulation is like, the majority of the charts accompanying them, and several of the groundbreaking theoretical treatments on the physics of currents, are only poorly known to present-day oceanographers

    Globalization and wage polarization

    Get PDF
    In the 1980s and 1990s, the US labour market experiences a remarkable polarization along with fast technological catch-up, as Europe and Japan improve their global innovation performance. Is foreign technological convergence an important source of wage polarization? To answer this question, we build a multi-country Schumpeterian growth model with heterogeneous workers, endogenous skill formation and occupational choice. We show that convergence produces polarization through business stealing and increasing competition in global innovation races. Quantitative analysis shows that these channels can be important sources of US polarization. Moreover, the model delivers predictions on the US wealth-income ratio consistent with empirical evidence

    Development of a single-board computer high-resolution microendoscope (PiHRME) to increase access to cervical cancer screening in underserved areas

    Get PDF
    Over 85% of cervical cancer deaths occur in developing countries.1 Even though the early detection and treatment of cervical precancerous lesions has been shown to prevent invasive cervical cancer, limited resources make it difficult to implement standard cervical cancer screening methods, such as the Pap Smear, in low-resource areas. Instead, many developing countries rely on the visual inspection of the cervix with acetic acid (VIA) to help identify precancerous and cancerous lesions. While VIA has a high sensitivity (82.14%), it has a poor specificity (50.00%), resulting in the overtreatment of women and misallocation of limited resources.2 Recent studies have shown that combining VIA with high-resolution microendoscope (HRME) imaging increases the specificity of cervical cancer screening.3-4 The HRME is a low-cost imaging system (~$2,100) that allows the user to image epithelial tissue in vivo at sub-cellular resolutions at the point-of-care. The current HRME imaging system is also accompanied with automatic image analysis software to distinguish normal and low-grade lesions from high-grade precancerous and cancerous lesions of the cervix. Please click Additional Files below to see the full abstract

    How to measure patent thickets – a novel approach

    Get PDF
    The existing literature identifies patent thickets indirectly. In this paper we propose a novel measure based on patent citations which allows us to measure the density of patent thickets directly. We discuss the algorithm which generates the measure and present descriptive results validating it. Moreover, we identify technology areas which are particularly impacted by patent thickets

    Quantitative analysis of high-resolution microendoscopic images for diagnosis of neoplasia in patients with Barrett’s esophagus

    Get PDF
    Background and Aims: Previous studies show that microendoscopic images can be interpreted visually to identify the presence of neoplasia in patients with Barrett’s esophagus (BE), but this approach is subjective and requires clinical expertise. This study describes an approach for quantitative image analysis of microendoscopic images to identify neoplastic lesions in patients with BE. Methods: Images were acquired from 230 sites from 58 patients by using a fiberoptic high-resolution microendoscope during standard endoscopic procedures. Images were analyzed by a fully automated image processing algorithm, which automatically selected a region of interest and calculated quantitative image features. Image features were used to develop an algorithm to identify the presence of neoplasia; results were compared with a histopathology diagnosis. Results: A sequential classification algorithm that used image features related to glandular and cellular morphology resulted in a sensitivity of 84% and a specificity of 85%. Applying the algorithm to an independent validation set resulted in a sensitivity of 88% and a specificity of 85%. Conclusions: This pilot study demonstrates that automated analysis of microendoscopic images can provide an objective, quantitative framework to assist clinicians in evaluating esophageal lesions from patients with BE. (Clinical trial registration number: NCT01384227 and NCT02018367.

    SILAC-based phosphoproteomics reveals an inhibitory role of KSR1 in p53 transcriptional activity via modulation of DBC1

    Get PDF
    BACKGROUND We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown. METHODS A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer. RESULTS Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53. CONCLUSION Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity
    corecore