518 research outputs found

    How to run molecular dynamics simulations on electrospray droplets and gas phase proteins: Basic guidelines and selected applications.

    Get PDF
    The ability to transfer intact proteins and protein complexes into the gas phase by electrospray ionization (ESI) has opened up numerous mass spectrometry (MS)-based avenues for exploring biomolecular structure and function. However, many details regarding the ESI process and the properties of gaseous analyte ions are difficult to decipher when relying solely on experimental data. Molecular dynamics (MD) simulations can provide additional insights into the behavior of ESI droplets and protein ions. This review is geared primarily towards experimentalists who wish to adopt MD simulations as a complementary research tool. We touch on basic points such as force fields, the choice of a proper water model, GPU-acceleration, possible artifacts, as well as shortcomings of current MD models. Following this technical overview, we highlight selected applications. Simulations on aqueous droplets confirm that native ESI culminates in protein ion release via the charged residue model. MD-generated charge states and collision cross sections match experimental data. Gaseous protein ions produced by native ESI retain much of their solution structure. Moving beyond classical fixed-charge algorithms, we discuss a simple strategy that captures the mobile nature of H+ within gaseous biomolecules. These mobile proton simulations confirm the high propensity of gaseous proteins to form salt bridges, as well as the occurrence of charge migration during collision-induced unfolding and dissociation. It is hoped that this review will promote the use of MD simulations in ESI-related research. We also hope to encourage the development of improved algorithms for charged droplets and gaseous biomolecular ions

    Design of a mode converter for efficient light-atom coupling in free space

    Full text link
    In this article, we describe how to develop a mode converter that transforms a plane electromagnetic wave into an inward moving dipole wave. The latter one is intended to bring a single atom or ion from its ground state to its excited state by absorption of a single photon wave packet with near-100% efficiency.Comment: RevTex4, 3 figures, revised version, accepted for publication at Appl. Phys.

    Optogenetic Control of Subcellular Protein Location and Signaling in Vertebrate Embryos.

    Get PDF
    This chapter describes the use of optogenetic heterodimerization in single cells within whole-vertebrate embryos. This method allows the use of light to reversibly bind together an "anchor" protein and a "bait" protein. Proteins can therefore be directed to specific subcellular compartments, altering biological processes such as cell polarity and signaling. I detail methods for achieving transient expression of fusion proteins encoding the phytochrome heterodimerization system in early zebrafish embryos (Buckley et al., Dev Cell 36(1):117-126, 2016) and describe the imaging parameters used to achieve subcellular light patterning

    Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening

    Get PDF
    Forward genetic screens are powerful tools for the unbiased discovery and functional characterization of specific genetic elements associated with a phenotype of interest. Recently, the RNA-guided endonuclease Cas9 from the microbial CRISPR (clustered regularly interspaced short palindromic repeats) immune system has been adapted for genome-scale screening by combining Cas9 with pooled guide RNA libraries. Here we describe a protocol for genome-scale knockout and transcriptional activation screening using the CRISPR-Cas9 system. Custom- or ready-made guide RNA libraries are constructed and packaged into lentiviral vectors for delivery into cells for screening. As each screen is unique, we provide guidelines for determining screening parameters and maintaining sufficient coverage. To validate candidate genes identified by the screen, we further describe strategies for confirming the screening phenotype, as well as genetic perturbation, through analysis of indel rate and transcriptional activation. Beginning with library design, a genome-scale screen can be completed in 9-15 weeks, followed by 4-5 weeks of validation.Paul & Daisy Soros Fellowships for New Americans (New York, N.Y.)McGovern Institute for Brain Research at MIT (Friends of McGovern Institute Fellowship)Massachusetts Institute of Technology. Poitras Center for Affective Disorders ResearchUnited States. Department of Energy (Computational Science Graduate Fellowship)National Institute of Mental Health (U.S.) (5DP1-MH100706)National Institute of Mental Health (U.S.) (1R01-MH110049)New York Stem Cell FoundationPoitras FoundationSimons FoundationPaul G. Allen Family FoundationVallee FoundationTom HarrimanB. Metcalf

    On-line mass spectrometry: membrane inlet sampling

    Get PDF
    Significant insights into plant photosynthesis and respiration have been achieved using membrane inlet mass spectrometry (MIMS) for the analysis of stable isotope distribution of gases. The MIMS approach is based on using a gas permeable membrane to enable the entry of gas molecules into the mass spectrometer source. This is a simple yet durable approach for the analysis of volatile gases, particularly atmospheric gases. The MIMS technique strongly lends itself to the study of reaction flux where isotopic labeling is employed to differentiate two competing processes; i.e., O2 evolution versus O2 uptake reactions from PSII or terminal oxidase/rubisco reactions. Such investigations have been used for in vitro studies of whole leaves and isolated cells. The MIMS approach is also able to follow rates of isotopic exchange, which is useful for obtaining chemical exchange rates. These types of measurements have been employed for oxygen ligand exchange in PSII and to discern reaction rates of the carbonic anhydrase reactions. Recent developments have also engaged MIMS for online isotopic fractionation and for the study of reactions in inorganic systems that are capable of water splitting or H2 generation. The simplicity of the sampling approach coupled to the high sensitivity of modern instrumentation is a reason for the growing applicability of this technique for a range of problems in plant photosynthesis and respiration. This review offers some insights into the sampling approaches and the experiments that have been conducted with MIMS

    Two different charge-separation pathways in photosystem II

    Get PDF
    Charge separation is an essential step in the conversion of solar energy into chemical energy in photosynthesis. To investigate this process, we performed transient absorption experiments at 77 K with various excitation conditions on the isolated Photosystem II reaction center preparations from spinach. The results have been analyzed by global and target analysis and demonstrate that at least two different excited states, (Ch

    Optical Control of Mammalian Endogenous Transcription and Epigenetic States

    Get PDF
    The dynamic nature of gene expression enables cellular programming, homeostasis, and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high precision spatiotemporal control of many cellular functions1-11. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here, we describe the development of Light-Inducible Transcriptional Effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain12-14 with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical co-factors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility3,4,6,7,15. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of awake mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states

    Simultaneous Quantitation of Amino Acid Mixtures using Clustering Agents

    Get PDF
    A method that uses the abundances of large clusters formed in electrospray ionization to determine the solution-phase molar fractions of amino acids in multi-component mixtures is demonstrated. For solutions containing either four or 10 amino acids, the relative abundances of protonated molecules differed from their solution-phase molar fractions by up to 30-fold and 100-fold, respectively. For the four-component mixtures, the molar fractions determined from the abundances of larger clusters consisting of 19 or more molecules were within 25% of the solution-phase molar fractions, indicating that the abundances and compositions of these clusters reflect the relative concentrations of these amino acids in solution, and that ionization and detection biases are significantly reduced. Lower accuracy was obtained for the 10-component mixtures where values determined from the cluster abundances were typically within a factor of three of their solution molar fractions. The lower accuracy of this method with the more complex mixtures may be due to specific clustering effects owing to the heterogeneity as a result of significantly different physical properties of the components, or it may be the result of lower S/N for the more heterogeneous clusters and not including the low-abundance more highly heterogeneous clusters in this analysis. Although not as accurate as using traditional standards, this clustering method may find applications when suitable standards are not readily available
    • …
    corecore