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A B S T R A C T 

The ability to transfer intact proteins and protein complexes into the gas phase by electrospray 

ionization (ESI) has opened up numerous mass spectrometry (MS)-based avenues for exploring 

biomolecular structure and function. However, many details regarding the ESI process and the 

properties of gaseous analyte ions are difficult to decipher when relying solely on experimental 

data. Molecular dynamics (MD) simulations can provide additional insights into the behavior of 

ESI droplets and protein ions. This review is geared primarily towards experimentalists who wish 

to adopt MD simulations as a complementary research tool. We touch on basic points such as 

force fields, the choice of a proper water model, GPU-acceleration, possible artifacts, as well as 

shortcomings of current MD models. Following this technical overview, we highlight selected 

applications. Simulations on aqueous droplets confirm that “native” ESI culminates in protein ion 

release via the charged residue model. MD-generated charge states and collision cross sections 

match experimental data. Gaseous protein ions produced by native ESI retain much of their 

solution structure. Moving beyond classical fixed-charge algorithms, we discuss a simple strategy 

that captures the mobile nature of H+ within gaseous biomolecules. These mobile proton 

simulations confirm the high propensity of gaseous proteins to form salt bridges, as well as the 

occurrence of charge migration during collision-induced unfolding and dissociation. It is hoped 

that this review will promote the use of MD simulations in ESI-related research. We also hope to 

encourage the development of improved algorithms for charged droplets and gaseous biomolecular 

ions.  
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1. Introduction 

Electrospray ionization (ESI) transforms solution phase proteins and other biomolecules into 

multiply charged gaseous ions for analysis by mass spectrometry (MS). “Native” ESI-MS [1-5] 

experiments aim to preserve solution structures and interactions throughout the transition from 

bulk solution into the vacuum of the mass spectrometer. This approach reports directly on protein-

protein and protein-ligand binding stoichiometries [1-4,6,7]. Native ESI-MS requires non-

denaturing aqueous solutions, along with ion sampling conditions that minimize collisional 

activation. This field continues to evolve rapidly, fueled by advances in ion sources, mass 

analyzers, experimental protocols, and computational/theoretical methods [8-12]. 

When operated in positive ion mode, an ESI source disperses protein solution into droplets 

that carry excess H+, NH4
+, or Na+ [13,14]. Evaporation and fission events close to the Rayleigh 

limit produce successively smaller droplets [13,15]. The mechanisms of analyte ion release from 

these nanodroplets were shrouded in controversy for a long time [13,14,16-20]. In recent years 

molecular dynamics (MD) simulation techniques have contributed significantly to a better 

understanding of ESI droplets [21-27] and gas phase proteins [28-36]. The importance of MD 

techniques in this area stems from the fact that it is difficult to obtain high resolution structural 

information on ESI nanodroplets and large gaseous biomolecules. Ion mobility spectrometry 

(IMS) [37-39], optical techniques [40,41], and dissociation studies [42,43] provide partial insights, 

but they do not yield atomically resolved structural data. This is in contrast to the condensed 

phase, where detailed conformational information is available from X-ray crystallography, NMR 

spectroscopy, and cryo-electron microscopy [44,45]. 

This review is written for ESI-MS experimentalists who wish to adopt MD techniques for 

broadening the reach and scope of their activities. By sharing some of our own experiences, we 

hope to make MD simulations more accessible to this target group. Various MD simulation 
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packages are available, several of them as free open source downloads. Here we will focus on 

Gromacs [46,47], a program that has a large user community and offers impressive performance. 

We will briefly cover some technical aspects, before discussing MD data relevant to ESI droplets 

and the structure/dynamics of protein ions generated by native ESI.  

 

2. Solution vs. Gas Phase Simulations 

MD simulations [46] are a computational tool for modeling the temporal evolution of a system, 

e.g., the conformation of a protein, by iteratively integrating Newton’s Second Law (force = mass 

 acceleration). The forces acting on every atom are calculated according to force = -grad V(r), 

where V(r) is the potential energy of an atom at position r. V(r) is determined by interactions with 

all other atoms. After calculating the acceleration for each atom, all atom coordinates are updated, 

and the process is repeated. Each of these iteration steps covers roughly 1 fs. The mathematical 

form of V(r) is defined in the MD force field which includes atomic charges, Lennard-Jones 

parameters and torsional parameters (bond angles and lengths are often treated as constraints). 

Some widely used force fields are OPLS/AA [48], AMBER [49], and CHARMM [50]. Different 

versions of these force fields are available, and they remain under constant development. 

Compared to ab initio or DFT-based methods, the computational cost associated with MD 

simulations is low, allowing systems comprising many thousands of atoms to be studied on 

relatively long time scales. Nanoseconds to microseconds are easily accessible, even millisecond 

runs have been demonstrated [51,52].  

Typical MD force fields such as those mentioned above are semi-empirical. Parameters are 

initially derived from ab initio or DFT calculations. Subsequent parameter fitting optimizes the 

match with condensed phase experimental data, including crystallographic conformational 

preferences and NMR dipolar couplings in solution [48,53]. Currently there is no comprehensive 
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force field that has been specifically designed for biomolecular systems in the gas phase. Instead, 

all of the commonly used force fields have been optimized for bulk solution simulations. It is 

common practice to apply these solution force fields for studies on ESI droplets [21-26] and 

electrosprayed proteins [28-36].  

Is the use of solution force fields for gas phase simulations a valid approach? Under 

realistic conditions certain parameters such as charge distributions around surface-exposed atoms 

will differ in the two environments [54]. Polarizable models can capture some of these effects 

[55,56], but computational cost limits their usefulness. Luckily, even conventional (fixed charge) 

solution force fields can perform quite well in the gas phase, as exemplified by structural and 

energetic comparisons with ab initio vacuum data on small model compounds [48,53,57]. In 

addition, ESI droplets and native-like (compact) gaseous proteins have most of their atoms buried 

in the interior, such that they will not “feel” the gas phase environment to the same extent as 

would be the case for small model compounds in vacuo. Condensed phase force fields can be 

expected to provide a reasonable description of these buried moieties, whereas parameters derived 

for a genuine gas phase environment would likely be less appropriate. 

In summary, the widely practiced use of solution force fields for gas phase simulations is 

borne out of necessity. Data generated in this way can nonetheless provide surprisingly good semi-

quantitative descriptions of biomolecular gaseous systems. Ultimately, the results of any 

simulation have to be judged by the extent to which they offer new insights and make predictions 

that are verifiable in experiments. Future advances will hopefully produce computationally 

inexpensive models that are specifically designed for the gas phase. Some efforts in this direction 

are outlined below, such as the implementation of mobile proton algorithms [34,58]. 
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3. Periodic Boundary Conditions in the Gas Phase? 

MD simulations in solution usually employ periodic boundary conditions (PBC), i.e., the 

simulation box is surrounded by identical images of itself in all three dimensions [46]. The 

simulation box has to be neutralized by compensating the intrinsic protein charge via addition of 

electrolyte ions such as Na+ and/or Cl- to the solvent. PBC allow simulations on quasi-infinite bulk 

systems, without having to deal with surface effects (Fig. 1A). Electrostatic interactions within 

PBC simulations are commonly treated by splitting VCoul(r) into a short range term that is 

calculated explicitly, plus a long range term that is solved in reciprocal space using Particle Mesh 

Ewald (PME) summation [59,60]. Parameter files for such solution PBC/PME conditions are 

readily available [61]. 

 For novices wanting to run gas phase MD simulations it is tempting to simply adapt the 

aforementioned solution protocol, turn the protein into a z+ ESI ion via a judicious choice of side 

chain charges, and use PBC/PME in the absence of solvent (Fig. 1B). Unfortunately, such 

PBC/PME strategies are not suitable for gas phase simulations. Subjecting a z+ simulation box to 

PBC implies a periodic system with infinite charge. The PME algorithm deals with this situation 

by adding a uniform neutralizing background charge that can induce simulation artifacts [62]. 

Also, the long-range nature of Coulomb interactions makes it unavoidable that PBC images 

interact with each other, unless special precautions are taken (see below). The proper way to run 

gas phase simulations is without PBC, without PME, and without cutoffs for Coulomb or Lennard-

Jones interactions (Fig. 1C) [25]. 

 The effects of an incorrectly implemented gas phase simulation can be demonstrated using 

a simple model system. We chose two gaseous Na+ ions that were placed 1 nm apart at t = 0 in the 

vacuum. Once the MD simulation starts, the only physically reasonable outcome is that the two 

ions move away from each in monotonic fashion because of electrostatic repulsion. This behavior 
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is indeed observed when running the simulation under proper conditions, i.e., without PBC, 

without PME, and without cutoffs (Fig. 1D, blue line). In contrast, an unrealistic oscillatory 

motion is obtained when employing a typical solution-type MD protocol (without solvent, but with 

PBC, with PME, and with cutoffs), illustrated by the red line in Fig. 1D. 

 

4. GPU-Accelerated Gas Phase Simulations in Gromacs: Pseudo-PBC 

Gas phase MD simulations can be challenging because proper conditions without cutoffs (Fig. 1C) 

result in an awkward N2 scaling [25], implying that runs become very slow when moving towards 

proteins and droplets with N >> 103 atoms. This problem can be mitigated by graphics processing 

unit (GPU) accelerated computing. In recent years molecular simulations have benefited 

tremendously from cheap high-performance GPUs that were originally developed for gaming (e.g., 

from NVIDIA). Gromacs and other MD packages can employ GPUs for non-bonded force 

calculations in a highly parallel fashion [47], boosting the performance of desktop workstations to 

levels that used to be restricted to high-end computer clusters [63]. 

Unfortunately, much of the GPU acceleration code in current MD packages is geared 

towards solution PBC/PME runs. For existing Gromacs versions (starting at 4.6) GPU acceleration 

is available only in conjunction with the Verlet neighbor search algorithm [64], and the latter has 

been implemented only for PBC. In other words, GPU acceleration in Gromacs requires the use of 

PBC. This is a problem for gas phase simulations, where PBC can cause artifacts as noted earlier 

(Fig. 1B). Luckily, there is a simple work-around for this issue. 

GPU-accelerated gas phase simulations can be implemented in Gromacs by using a 

“pseudo-PBC” approach. For this purpose PME is switched off. The PBC box dimensions are 

increased to the maximum allowed value of (999.9 nm)3. Coulomb and Lennard-Jones cutoffs are 

set to a value that is very large but does not exceed the box dimensions (we use 333.3 nm). Next, 
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the gas phase protein or droplet is placed in the center of the box and the MD run can commence. 

The basic idea behind this approach is that the simulation system will experience a proper vacuum 

environment as long as it remains within its 333.3 nm cutoff bubble (Fig. 1E). All Coulomb and 

Lennard-Jones interactions within the system are fully accounted for, but interactions between 

PBC images do not take place due to the combined effects of box size and cutoffs. It may be 

necessary to remove ejected solvent molecules or clusters from the simulation to ensure that PBC 

images remain isolated from one another. Gas phase data produced using the pseudo-PBC 

approach are indistinguishable from those generated in a genuine non-PBC vacuum environment 

(Fig. 1D), while shortening run times for large systems by one to two orders of magnitude. 

 

5. Additional Considerations for ESI Droplets 

Solvent evaporation from nanodroplets tends to lower the droplet temperature by evaporative 

cooling [65]. Under experimental conditions this effect is countered by heating in the ion source 

region. In simulations, evaporative cooling is problematic because it tends to freeze the system 

[25]. Traditional thermostating algorithms [66-68] only offer a partial solution to this problem 

[69,70]. To overcome this issue we developed a trajectory stitching approach [26,69], where long 

thermostated simulation runs are broken down into short (~250 ps) segments. Solvent molecules 

and charge carriers that have left the droplet are removed from the simulation after each segment. 

The remaining droplet is then re-centered in the pseudo-PBC box, and new atom velocities 

corresponding to the desired temperature are sampled from a Maxwell-Boltzmann distribution 

prior to beginning the next segment. In essence, this procedure represents a crude implementation 

of the Andersen thermostat [71]. In addition to stabilizing the temperature, trajectory stitching 

dramatically shortens the overall run time by successively reducing the number of molecules in the 
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simulation. For droplets containing sulfolane or other slowly evaporating species it may be 

advantageous to use trajectory stitching in conjunction with a forced evaporation protocol [72]. 

 A number of droplet simulations in the literature have relied on three-site water models 

such as SPC, SPC/E, or TIP3P that are computationally cheap and perform well in bulk solution 

[52]. Unfortunately, these models yield a surface tension  that is too low by roughly 30%. 

Considering the central role of  for the ESI process [13,73,74], this can be a serious limitation. 

We advocate the use of TIP4P/2005 water which matches the experimental  within ~1% over a 

wide temperature range [75]. TIP4P/2005 employs three fixed point charges and one Lennard-

Jones center [76]. The presence of four sites renders TIP4P/2005 computationally more expensive 

than other models, but its superior performance ensures that simulation results can be directly 

compared to experimental data. 

 Accurately modeling the formation of [M + zH]z+ analyte ions from aqueous droplets 

would require ab initio methods for dealing with Grotthus shuttling [77], i.e., water-water and 

water-protein proton transfer. Sadly, the time range and droplet size associated with ESI events are 

orders of magnitude beyond such high level approaches [78]. To sidestep this problem we resorted 

to simulate ESI droplets with Na+ (instead of H+) as excess charge carriers. Such simulations 

culminate in the formation of [M + zNa]z+ protein ions [26]. Experiments have demonstrated that 

protonated and sodiated proteins generated by native ESI share very similar properties [26], 

implying that many aspects of their formation mechanisms are analogous to one another. 

Nonetheless, it is hoped that future developments will soon pave the way towards computational 

protocols for modeling proton transfer events for large solvent/protein systems on long time scales. 

First steps in this direction are already underway [32,34,58,79,80] (see also section 9). 
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6. Flying Ice Cubes 

A well-known artifact that can arise during MD simulations is the so-called “flying ice cube 

effect” [81]. It describes a situation where the kinetic energy of the system gets converted largely 

into rotation around the center of mass and/or translation of the entire system. Under these 

conditions the total kinetic energy can be formally consistent with the user-selected temperature, 

while the kinetic energy stored in internal degrees of freedom is much lower than expected such 

that the system is internally cold. Also, centrifuge pseudoforces encountered during rapid rotation 

can trigger unrealistic events. Gas phase simulations are particularly vulnerable to such artifacts, 

because rotation/translation is not inhibited by friction against an external solvent. Different types 

of systems and different thermostats can be more or less prone to flying ice cube behavior [66-

68,71]. It is therefore essential to periodically remove the net translation and rotation from the 

simulation, and to carefully inspect unprocessed trajectory data for possible artifacts. 

 

7. Native ESI Simulations 

The remainder of this review illustrates simulation results obtained using the MD strategies 

outlined above. We focus on native ESI conditions, where proteins in non-denaturing aqueous 

solution enter the ESI capillary in their biologically active, folded conformations. The current 

section and the two subsequent chapters will discuss three key issues (i) How are protein ions 

released from ESI nanodroplets during native ESI? (ii) Do electrosprayed proteins retain solution-

like conformations under native ESI conditions? (iii) How do electrosprayed proteins respond to 

external perturbations such as collisional heating? 

 Fig. 2A shows MD data that describe the release of ubiquitin from an aqueous ESI 

nanodroplet that is charged with excess Na+ [26]. Gradual droplet shrinkage as the result of water 
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evaporation is accompanied by the ejection of solvated Na+ (Fig. 2B). These charge ejection 

events are well described by the ion evaporation model (IEM) [12,16]. As the final water 

molecules leave, all remaining Na+ in the vanishing droplet associate with carboxylates on the 

protein surface, thereby producing a [M + zNa]z+ gaseous ion. The charge states and collision cross 

sections predicted by MD simulations for ubiquitin and other globular proteins agree well with 

experimental data (Fig 2C). Also, the gaseous proteins retain conformations close to their initial 

solution structures [26]. Overall, these MD results  confirm the view that native ESI produces 

solution-like gas phase proteins via the charged residue mechanism (CRM) [73,74]. IEM events 

play an ancillary role during this process by keeping the net charge of the shrinking droplet just 

below the Rayleigh limit [19,82]. These data [26] explain the experimental observation that 

protein ions produced by native ESI have charge states close to those of protein-sized aqueous 

droplets at the Rayleigh limit [73]. This conclusion holds regardless of the initial protein charge 

state in solution [26]. 

 

8. Mobile Proton MD Simulations on Gaseous Proteins 

Typical MD force fields employ static charges on all titratable side chains and termini. For 

solution simulations at neutral pH this is quite adequate because pKa values dictate that Glu, Asp, 

and C-termini (CT) will be negatively charged, whereas each Arg, Lys, and N-terminus (NT) 

carries a positive charge. Histidine with its pKa in the near-neutral range is usually treated as a 

neutral, although it can also be protonated [83].  

The situation is more challenging when modeling the behavior of electrosprayed proteins. 

In traditional gas phase MD runs the user has to manually select the protonation state of each 

titratable site such that the overall charge state is consistent with that of the experimentally formed 

[M + zH]z+ ion. Some studies make the simplifying assumption that all carboxylates are neutral 
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(protonated), and that excess protons can reside only on Arg, Lys, His, and NT [28,33,84]. 

However, even under such simplified conditions there are countless possibilities to distribute z 

excess protons on the protein. More importantly, it is incorrect to assume that acidic sites in [M + 

zH]z+ ions are generally neutral. Experiments have shown that gaseous biomolecular systems can 

contain a large number of R-COO- sites that are involved in salt bridges [42,80,85-89]. Another 

complication is the fact that protons in electrosprayed biomolecular ions are highly mobile, and 

that the sites of preferred proton occupancy may change as the protein structure evolves [32,80,90-

92]. Practitioners wanting to simulate the behavior of electrosprayed proteins thus face two 

dilemmas: (i) It is unclear how to choose the most appropriate spatial protonation pattern, 

considering the astronomical number of possible H+ locations. (ii) Conventional force fields will 

retain the initially chosen protonation pattern throughout the entire simulation. 

We addressed both of these issues by developing a mobile proton MD protocol for gas 

phase simulations [34,58]. Initial efforts in this direction were described by Thachuk et al. [32], 

but their approach used a simplified coarse-grained force field and did not allow for negative 

charges and/or salt bridges. The approach outlined here [34,58] is compatible with any atomistic 

force field (we chose OPLS/AA), and it allows for protonation changes of all titratable sites (NT0/+, 

Lys0/+, Arg0/+, His0/+, Asp0/-, Glu0/-, and CT0/-. Key element of this mobile proton method is a 

steepest-descent search protocol that quickly scans thousands of protonation patterns 

within a [M + zH]z+ ion. The algorithm works by minimizing the energy Etot that has an 

electrostatic term VCoul and a proton affinity contribution EPAint according to [32,34,58,84] 

 

Etot = VCoul + EPAint    (1) 

where 
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and where PAint(x) represents the intrinsic proton affinities (PAint(x) > 0) of the x = 1 … N 

titratable sites, with x = 1 for protonated sites, and x = 0 for deprotonated sites. Two algorithms 

for VCoul were implemented; a simple version that only considers interactions among sites with net 

charge [34], and a more sophisticated version that includes intramolecular solvation by 

considering electrostatic contributions from all atoms [58]. Similar to the trajectory stitching 

approach discussed in section 5, long MD runs were broken down into brief segments during 

which the protein structure was allowed to evolve with fixed charges. After each segment the 

protons were redistributed using equations 1 and 2, and subsequently the simulation was restarted 

at the desired temperature. 

 The results of a mobile proton MD simulation are illustrated in Fig. 3, using 16+ ions of 

the homo-tetrameric protein avidin at 300 K, i.e., under gentle thermal conditions [58]. The run 

was started with the X-ray coordinates of the complex. All 16 charges were placed on the same 

subunit, while all other sites were initially neutral. Evidently, this particular starting pattern is not 

realistic; it was chosen only to illustrate the performance of the algorithm and the absence of 

memory effects. Immediately after starting the simulation the algorithm produced protonation 

patterns where the 16 excess protons were spread roughly evenly across all four subunits. After 

200 ns of mobile proton MD numerous additional positive charges had formed, compensated by 

the presence of deprotonated carboxylates. This proton migration caused an energetically 

favorable change in VCoul, reflecting newly formed positive/negative charge-charge interactions. At 

the same time, there were unfavorable changes in EPAint caused by proton transfer from -COOH 
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groups to sites with lower PAint. These two opposing trends were of similar magnitude  (~104 kJ 

mol-1), resulting in Etot values that remained roughly constant throughout the simulations. 

In the final avidin MD structures after 200 ns the positively and negatively charged side 

chains had reoriented such that an intricate salt bridge network was generated at the protein 

surface (Fig. 3B), in line with recent experimental data on smaller systems [42,80,85-89]. 

Comparison of the MD structure after 200 ns and the initial X-ray coordinates reveals that gas 

phase avidin retained most of its structural features, despite some loop rearrangements and 

alterations in the orientation of surface residues (Fig. 3C). These mobile proton MD data support 

the basic premise of native ESI-MS experiments, i.e., the view that electrosprayed proteins can 

retain much of their solution structure [1-4]. We hypothesize that the formation of a salt bridge 

network at the protein surface (Fig. 3B) assists in the kinetic trapping of these solution-like 

conformers [58]. 

 

9. Collision-Induced Unfolding and Dissociation 

In addition to studying “unperturbed” gaseous proteins, it is interesting to probe how 

electrosprayed ions respond to destabilizing external factors. Collisions with background gas can 

be implemented on most MS instruments. The resulting analyte heating causes collision-induced 

unfolding (CIU) and/or collision-induced dissociation (CID) [43,93]. Experiments demonstrated 

that multi-protein complexes typically undergo CID via ejection of a single subunit with a 

disproportionally large amount of charge [93-96]. For example, [M4 + 14H]14+ transthyretin 

tetramers produce M7+ or M8+ monomers along with the complementary trimers [97]. In this case 

the monomeric CID products carry roughly ~50% of the total charge but only 25% of the total 

mass. 
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A tentative model has emerged to explain the asymmetric charge partitioning of 

collisionally activated complexes [32,93-96,98]. The model envisions that the complex initially 

retains a compact structure with excess protons that are spread more or less evenly across the 

surface. Collisional activation induces unfolding of a single subunit. Subsequently, this subunit is 

ejected from the complex. It is assumed that unfolding is accompanied by proton migration 

towards the unravelling subunit. This charge transfer takes place up to the point where the 

departing subunit separates from the complex [32,93-95,98,99]. The proposed unfolding/charge 

migration model relies on the high mobility of protons (see section 8), and it is supported by the 

observation of semi-unfolded intermediates in IMS experiments [98,100]. However, the structures 

of these intermediates remain nebulous, and there are also alternative proposals that envision 

completely different mechanistic avenues [101]. MD simulations offer an obvious approach to 

explore the CID mechanism, but until recently [32] the fixed charge nature of traditional MD force 

fields has precluded meaningful computational studies in this area. 

 Mobile proton MD runs of the CID process for transthyretin [M4 + 14H]14+ are illustrated 

in Fig. 4 [34]. The algorithm used for these runs was similar to that discussed in section 8. 

However, for the scenario considered here the effects of collisional heating were mimicked by 

gradually raising the temperature from 350 K to 600 K. Simulations with an explicit collision gas 

would also have been possible [102]. For the data considered here, the MD runs showed that 

transthyretin initially retained a compact conformation with roughly the same net charge on each 

subunit. Subsequently, one of the subunits started to unfold. This process occurred in conjunction 

with H+ migration onto the unraveling chain, driven by electrostatic repulsion within the complex. 

Ultimately, the unfolded chain was ejected as an elongated 8+ ion (Fig. 4A). The fluctuating 

number of protons on each subunit, and the close correlation between unfolding and charge 

enrichment of subunit C is evident from Fig. 4B (top two panels). Similar to avidin (section 8), 
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native-like transthyretin initially formed numerous salt bridges, evident from the large number of 

negative charges (R-COO- moieties) at the onset of the run. Most of these carboxylates gradually 

disappeared as salt bridges were disrupted by heat-induced structural changes (Fig. 4B, bottom 

panel). The simulations [34] also revealed unexpected phenomena, such as instances where two 

chains started to unfold simultaneously and competed for excess charge until one of them 

underwent ejection (with subsequent collapse of the charge-depleted trimer into a compact 

structure). The average charge states and overall conformations of the CID products from these 

simulations closely matched experimental observations, implying that the MD data capture the 

atomistic details of the CID process quite well. In conclusion, the MD results of Fig. 4 support the 

unfolding/charge migration model of the CID process [32,93-96,98], In addition, the simulations 

provide mechanistic insights that are not directly accessible by MS and IMS [34]. 

 

9. Conclusions 

MD simulations are increasingly being used for investigating charged droplets, electrosprayed 

proteins, and other gaseous biomolecular species. Limitations associated with current gas phase 

MD simulations include the following: (i) Commonly used force fields are designed for condensed 

phase applications; the parameters are not optimized for a gas phase environment [48-50]. (ii) 

Most MD runs are much shorter than the micro- to millisecond residence times of proteins within 

ESI droplets and inside typical MS/IMS instruments [13]. (iii) Mobile proton effects are often 

ignored, or they are treated via exceedingly simple algorithms instead of using proper ab initio 

methods [58]. (iv) While classical MD force fields describe orientational polarization quite well, 

electronic polarization effects are not considered in detail [12]. (v) The droplet simulations 
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discussed above employed Na+ as charge carriers, producing [M + zNa]z+ ions rather than 

protonated species that are of greater analytical relevance [26]. 

The issues summarized above provide a to-do list for computational chemists. It is hoped 

that many of these issues will be addressed in the near future through the development of better 

algorithms and faster computer hardware. How much trust can researchers put into gas phase data 

generated with currently existing MD methods? From the examples discussed above it is evident 

that the current methods already perform quite well. MD data confirmed that proteins can survive 

the ESI process without major structural perturbations [1-5]. Charge states and collision cross 

sections of MD-generated ions were in excellent agreement with experimental data [26]. Simple 

mobile proton algorithms [58] support experimental evidence that gaseous biomolecules tend to be 

zwitterionic with a large number of salt bridges [42,80,85-89]. CID simulations on multiprotein 

complexes correctly reproduce the charge states and conformational features of the dissociation 

products [34]. 

The value of any simulation strategy has to be judged by how well its predictions match 

experimental results, and by the extent to which it provides mechanistic insights that are otherwise 

inaccessible. Currently available MD techniques already have considerable predictive power for 

gas phase simulations. Considering the ongoing advances in this area, it seems certain that the role 

of MD simulations and related computational approaches will continue to expand. It is hoped that 

this review will encourage a greater number of experimentalists to include MD simulations in their 

tool box, for providing MS and IMS data with an atomistic structural underpinning. 
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Fig. Captions 

 

Fig. 1. Proper and improper use of PBC and PME for MD simulations. (A) Typical setup for 

solution runs, with a protein P and solvent molecules s. The simulation box is surrounded by 

identical images of itself. (B) Improper use of PBC/PME for gas phase simulations on a protein 

ion Pz+. (C) Proper setup for gas phase simulations, where Pz+ is treated without PBC, without 

PME, and without cutoffs. (D) MD data for two Na+ ions that were initially placed 1 nm apart in 

vacuum. Under proper conditions (blue line, as in panel C) the Na+ move away from each other. 

Under improper conditions (red line, as in panel B, PBC box width 13 nm, PME cutoff 1 nm) 

repulsion among PBC images causes the Na+ to oscillate. (E) Proper “pseudo-PBC” setup for gas 

phase simulations using Gromacs with GPU acceleration without PME. Coulomb and Lennard-

Jones cutoffs (dotted circles) are chosen such that all atoms within the protein interact with each 

other, while excluding image interactions. MD data produced under these conditions are included 

in panel D as open circles. 

 

Fig. 2. MD Simulation data, describing the formation of gaseous ubiquitin ions from an aqueous 

nanodroplet under native ESI conditions. (A) Protein release via droplet evaporation to dryness. 

Blue spheres represent Na+. “IEM” at t = 0.73 exemplifies a charge carrier ejection event. (B) 

Details of charge carrier ejection, i.e., number of Na+ in the droplet and relative droplet charge vs. 

time. (C) Comparison of experimental vs. MD-generated charge states and collision cross sections 

() for ubiquitin (ubq) cytochrome c (cyt c), and holo-myoglobin (hMb). Reproduced with 

permission from ref. [26]. Copyright 2015, American Chemical Society. 

 

Fig. 3. Mobile proton results for avidin [M4 + 16H]16+ in the gas phase. The four subunits are 
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depicted in different colors. (A) Starting conformation with an unrealistic initial charge pattern, 

where all 16 excess H+ were placed on side chains (blue) within the same subunit. After 200 ns of 

mobile proton MD, charge was distributed more or less evenly over all subunits, and abundant salt 

bridges had formed. Positively and negatively charged residues are highlighted in blue and red, 

respectively (B) Close-up of a salt bridge cluster in one of the subunits at t = 200 ns. (C) 

Comparison of X-ray coordinates and MD structure at t = 200 ns, revealing that the gas phase 

protein retained a native-like structure. Reproduced with permission from ref. [58]. Copyright 

2017, American Chemical Society. 

 

Fig. 4. Collision-induced dissociation of a gaseous transthyretin [M4 + 14H]14+ tetramer studied by 

mobile proton MD simulations. Both panels show data for the same simulation run. (A) Structural 

snapshots, illustrating different time points during the dissociation process. Also indicated is the 

net charge on each subunit for the various time points. (B) Temporal profiles for various 

parameters, from top to bottom: net charge on each subunit, radius of gyration (Rg), and total 

number of positive and negative charges in the complex. The dotted vertical line at t = 15.13 ns 

indicates the point where the departing chain separates from the rest of the complex. Reproduced 

with permission from ref. [34]. Copyright 2016, American Chemical Society. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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