16 research outputs found

    Perspective taking and systematic biases in object location memory.

    Get PDF
    The aim of the current study was to develop a novel task that allows for the quick assessment of spatial memory precision with minimal technical and training requirements. In this task, participants memorized the position of an object in a virtual room and then judged from a different perspective, whether the object has moved to the left or to the right. Results revealed that participants exhibited a systematic bias in their responses that we termed the reversed congruency effect. Specifically, they performed worse when the camera and the object moved in the same direction than when they moved in opposite directions. Notably, participants responded correctly in almost 100% of the incongruent trials, regardless of the distance by which the object was displaced. In Experiment 2, we showed that this effect cannot be explained by the movement of the object on the screen, but that it relates to the perspective shift and the movement of the object in the virtual world. We also showed that the presence of additional objects in the environment reduces the reversed congruency effect such that it no longer predicts performance. In Experiment 3, we showed that the reversed congruency effect is greater in older adults, suggesting that the quality of spatial memory and perspective-taking abilities are critical. Overall, our results suggest that this effect is driven by difficulties in the precise encoding of object locations in the environment and in understanding how perspective shifts affect the projected positions of the objects in the two-dimensional image

    Age-Related Differences in Resting-State EEG and Allocentric Spatial Working Memory Performance

    No full text
    During normal aging resting-state brain activity changes and working memory performance declines as compared to young adulthood. Interestingly, previous studies reported that different electroencephalographic (EEG) measures of resting-state brain activity may correlate with working memory performance at different ages. Here, we recorded resting-state EEG activity and tested allocentric spatial working memory in healthy young (20–30 years) and older (65–75 years) adults. We adapted standard EEG methods to record brain activity in mobile participants in a non-shielded environment, in both eyes closed and eyes open conditions. Our study revealed some age-group differences in resting-state brain activity that were consistent with previous results obtained in different recording conditions. We confirmed that age-group differences in resting-state EEG activity depend on the recording conditions and the specific parameters considered. Nevertheless, lower theta-band and alpha-band frequencies and absolute powers, and higher beta-band and gamma-band relative powers were overall observed in healthy older adults, as compared to healthy young adults. In addition, using principal component and regression analyses, we found that the first extracted EEG component, which represented mainly theta, alpha and beta powers, correlated with spatial working memory performance in older adults, but not in young adults. These findings are consistent with the theory that the neurobiological bases of working memory performance may differ between young and older adults. However, individual measures of resting-state EEG activity could not be used as reliable biomarkers to predict individual allocentric spatial working memory performance in young or older adults

    Environment Learning from Spatial Descriptions: The Role of Perspective and Spatial Abilities in Young and Older Adults

    No full text
    The present study investigated age-related differences between young and older adults deriving mental representations from survey and route descriptions, and the involvement of spatial skills in their representation. A sample of 34 young (aged 20-30), 34 middle-aged (50-60) and 32 older (61-80) adults listened to survey and route descriptions of an environment and their recall was tested with a free recall task, a verification test, and a map drawing task; several spatial measures were also administered. The results showed that: i) middle-aged and older adults performed worse than young adults in all recall tasks; ii) all participants formed a perspective-dependent mental representation after learning a route description, but not after learning a survey description (as shown by the verification test); iii) age and spatial abilities predicted recall performance (in relation to type of task and the perspective learnt). Overall, spatial perspective and spatial skills influence the construction of environment representations in young, middle-aged and older adults

    Age-related wayfinding differences in real large-scale environments: detrimental motor control effects during spatial learning are mediated by executive decline?

    Get PDF
    The aim of this study was to evaluate motor control activity (active vs. passive condition) with regards to wayfinding and spatial learning difficulties in large-scale spaces for older adults. We compared virtual reality (VR)-based wayfinding and spatial memory (survey and route knowledge) performances between 30 younger and 30 older adults. A significant effect of age was obtained on the wayfinding performances but not on the spatial memory performances. Specifically, the active condition deteriorated the survey measure in all of the participants and increased the age-related differences in the wayfinding performances. Importantly, the age-related differences in the wayfinding performances, after an active condition, were further mediated by the executive measures. All of the results relative to a detrimental effect of motor activity are discussed in terms of a dual task effect as well as executive decline associated with aging

    Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet

    No full text
    Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions
    corecore