41,419 research outputs found

    Features of application of financial innovations by construction enterprises

    Get PDF

    Nonlocality of nucleon interaction and an anomalous off shell behavior of the two-nucleon amplitudes

    Full text link
    The problem of the ultraviolet divergences that arise in describing the nucleon dynamics at low energies is considered. By using the example of an exactly solvable model it is shown that after renormalization the interaction generating nucleon dynamics is nonlocal in time. Effects of such nonlocality on low-energy nucleon dynamics are investigated. It is shown that nonlocality in time of nucleon-nucleon interactions gives rise to an anomalous off-shell behavior of the two-nucleon amplitudes that have significant effects on the dynamics of many-nucleon systems.Comment: 9 pages, 4 figures, ReVTeX

    Parameterization of Stabilizing Linear Coherent Quantum Controllers

    Full text link
    This paper is concerned with application of the classical Youla-Ku\v{c}era parameterization to finding a set of linear coherent quantum controllers that stabilize a linear quantum plant. The plant and controller are assumed to represent open quantum harmonic oscillators modelled by linear quantum stochastic differential equations. The interconnections between the plant and the controller are assumed to be established through quantum bosonic fields. In this framework, conditions for the stabilization of a given linear quantum plant via linear coherent quantum feedback are addressed using a stable factorization approach. The class of stabilizing quantum controllers is parameterized in the frequency domain. Also, this approach is used in order to formulate coherent quantum weighted H2H_2 and HH_\infty control problems for linear quantum systems in the frequency domain. Finally, a projected gradient descent scheme is proposed to solve the coherent quantum weighted H2H_2 control problem.Comment: 11 pages, 4 figures, a version of this paper is to appear in the Proceedings of the 10th Asian Control Conference, Kota Kinabalu, Malaysia, 31 May - 3 June, 201

    Covariance Dynamics and Entanglement in Translation Invariant Linear Quantum Stochastic Networks

    Full text link
    This paper is concerned with a translation invariant network of identical quantum stochastic systems subjected to external quantum noise. Each node of the network is directly coupled to a finite number of its neighbours. This network is modelled as an open quantum harmonic oscillator and is governed by a set of linear quantum stochastic differential equations. The dynamic variables of the network satisfy the canonical commutation relations. Similar large-scale networks can be found, for example, in quantum metamaterials and optical lattices. Using spatial Fourier transform techniques, we obtain a sufficient condition for stability of the network in the case of finite interaction range, and consider a mean square performance index for the stable network in the thermodynamic limit. The Peres-Horodecki-Simon separability criterion is employed in order to obtain sufficient and necessary conditions for quantum entanglement of bipartite systems of nodes of the network in the Gaussian invariant state. The results on stability and entanglement are extended to the infinite chain of the linear quantum systems by letting the number of nodes go to infinity. A numerical example is provided to illustrate the results.Comment: 11 pages, 3 figures, submitted to the 54th IEEE Conference on Decision and Control, December 15-18, 2015, Osaka, Japa
    corecore