222 research outputs found
Who is connected with whom? A Social network analysis of institutional interactions in the European CCA and DRR landscape
Communication and collaboration are critical for designing and implementing responses to climate change impacts and related disasters. This acknowledgement has increased interest in understanding social and institutional networks for climate change adaptation (CCA) and disaster risk reduction (DRR). In this study, we used Social Network Analysis (SNA) to explore institutional interactions within and across the communities of the aforementioned domains in Europe. Firstly, we investigated the type and intensity of interactions. We calculated SNA metrics to assess the roles of different actors and applied cluster analysis to identify actors with similar patterns of connections. SNA showed that communication is often more intensive within the two communities, while collaboration is frequent around topics related to both CCA and DRR. Cluster analysis revealed that actors tied with DRR were more closely connected, while actors tied with CCA and those with mixed connections showed no obvious clustering affnity. The European Climate Adaptation Platform, Climate-ADAPT, had the highest value for various SNA metrics, reflecting its popularity in the network and its potential for enhancing interactions among its actors. Finally, SNA was complemented by qualitative interviews, which emphasised the importance of connecting CCA and DRR in organisational mission and vision statements
Pulsating wave for mean curvature flow in inhomogeneous medium
We prove the existence and uniqueness of pulsating waves for the motion by mean curvature of an n-dimensional hypersurface in an inhomogeneous medium, represented by a periodic forcing. The main difficulty is caused by the degeneracy of the equation and the fact the forcing is allowed to change sign. Under the assumption of weak inhomogeneity, we obtain uniform oscillation and gradient bounds so that the evolving surface can be written as a graph over a reference hyperplane. The existence of an effective speed of propagation is established for any normal direction. We further prove the Lipschitz continuity of the speed with respect to the normal and various stability properties of the pulsating wave. The results are related to the homogenisation of mean curvature flow with forcing
Recommended from our members
Effect of Demineralized Bone Matrix, Bone Marrow Mesenchymal Stromal Cells, and Platelet-Rich Plasma on Bone Tunnel Healing After Anterior Cruciate Ligament Reconstruction: A Comparative Micro-Computed Tomography Study in a Tendon Allograft Sheep Model
Background:
The effect of demineralized bone matrix (DBM), bone marrow–derived mesenchymal stromal cells (BMSCs), and platelet-rich plasma (PRP) on bone tunnel healing in anterior cruciate ligament reconstruction (ACLR) has not been comparatively assessed.
Hypothesis:
These orthobiologics would reduce tunnel widening, and the effects on tunnel diameter would be correlated with tunnel wall sclerosis.
Study Design:
Controlled laboratory study.
Methods:
A total of 20 sheep underwent unilateral ACLR using tendon allograft and outside-in interference screw fixation. The animals were randomized into 4 groups (n = 5 per group): Group 1 received 4mL of DBM paste, group 2 received 10 million BMSCs in fibrin sealant, group 3 received 12 mL of activated leukocyte-poor platelet-rich plasma, and group 4 (control) received no treatment. The sheep were euthanized after 12 weeks, and micro-computed tomography scans were performed. The femoral and tibial tunnels were divided into thirds (aperture, midportion, and exit), and the trabecular bone structure, bone mineral density (BMD), and tunnel diameter were measured. Tunnel sclerosis was defined by a higher bone volume in a 250-µm volume of interest compared with a 4-mm volume of interest surrounding the tunnel.
Results:
Compared with the controls, the DBM group had a significantly higher bone volume fraction (bone volume/total volume [BV/TV]) (52.7% vs 31.8%; P = .020) and BMD (0.55 vs 0.47 g/cm3; P = .008) at the femoral aperture and significantly higher BV/TV at femoral midportion (44.2% vs 32.9%; P = .038). There were no significant differences between the PRP and BMSC groups versus controls in terms of trabecular bone analysis or BMD. In the controls, widening at the femoral tunnel aperture was significantly greater than at the midportion (46.7 vs 41.7 mm2; P = .034). Sclerosis of the tunnel was common and most often seen at the femoral aperture. In the midportion of the femoral tunnel, BV/TV (r = 0.52; P = .019) and trabecular number (r S = 0.50; P = .024) were positively correlated with tunnel widening.
Conclusion:
Only DBM led to a significant increase in bone volume, which was seen in the femoral tunnel aperture and midportion. No treatment significantly reduced bone tunnel widening. Tunnel sclerosis in the femoral tunnel midportion was correlated significantly with tunnel widening
Motion of a droplet for the Stochastic mass conserving Allen-Cahn equation
We study the stochastic mass-conserving Allen-Cahn equation posed on a smoothly bounded domain of R2 with additive, spatially smooth, space-time noise. This equation describes the stochastic motion of a small almost semicircular droplet attached to domain's boundary and moving towards a point of locally maximum curvature. We apply It^o calculus to derive the stochastic dynamics of the center of the droplet by utilizing the approximately invariant manifold introduced by Alikakos, Chen and Fusco [2] for the deterministic problem. In the stochastic case depending on the scaling, the motion is driven by the change in the curvature of the boundary and the stochastic forcing. Moreover, under the assumption of a su ciently small noise strength, we establish stochastic stability of a neighborhood of the manifold of boundary droplet states in the L2- and H1-norms, which means that with overwhelming probability the solution stays close to the manifold for very long time-scales
{\phi}^4 Solitary Waves in a Parabolic Potential: Existence, Stability, and Collisional Dynamics
We explore a {\phi}^4 model with an added external parabolic potential term.
This term dramatically alters the spectral properties of the system. We
identify single and multiple kink solutions and examine their stability
features; importantly, all of the stationary structures turn out to be
unstable. We complement these with a dynamical study of the evolution of a
single kink in the trap, as well as of the scattering of kink and anti-kink
solutions of the model. We see that some of the key characteristics of
kink-antikink collisions, such as the critical velocity and the multi-bounce
windows, are sensitively dependent on the trap strength parameter, as well as
the initial displacement of the kink and antikink
Preservation of bone tissue integrity with temperature control for in situ SR-MicroCT experiments
© 2018 by the authors. Digital volume correlation (DVC), combined with in situ synchrotron microcomputed tomography (SR-microCT) mechanics, allows for 3D full-field strain measurement in bone at the tissue level. However, long exposures to SR radiation are known to induce bone damage, and reliable experimental protocols able to preserve tissue properties are still lacking. This study aims to propose a proof-of-concept methodology to retain bone tissue integrity, based on residual strain determination using DVC, by decreasing the environmental temperature during in situ SR-microCT testing. Compact and trabecular bone specimens underwent five consecutive full tomographic data collections either at room temperature or 0 °C. Lowering the temperature seemed to reduce microdamage in trabecular bone but had minimal effect on compact bone. A consistent temperature gradient was measured at each exposure period, and its prolonged effect over time may induce localised collagen denaturation and subsequent damage. DVC provided useful information on irradiation-induced microcrack initiation and propagation. Future work is necessary to apply these findings to in situ SR-microCT mechanical tests, and to establish protocols aiming to minimise the SR irradiation-induced damage of bone
Assessing climate change impacts on crops by adopting a set of crop performance indicators
AbstractThe impact of climate change on the agricultural systems of three major islands in the Mediterranean basin, namely Sicily, Crete and Cyprus, was evaluated using a suite of specifically calibrated crop models and the outputs of a regional circulation model for Representative Concentration Pathway (RCP) 4.5 and 8.5 downscaled to 12 km of resolution and tested for its effectiveness in reproducing the local meteorological data. The most important annual (wheat, barley, tomato and potato) and perennial (grapevine and olive tree) crops were selected to represent the agricultural systems of the islands. The same modelling framework was used to test the effectiveness of autonomous adaptation options, such as shifting sowing date and the use of varieties with different growing season length. The results highlighted that, on average, warmer temperatures advanced both anthesis and maturity of the selected crops, but at different magnitudes depending on the crop and the island. Winter crops (barley, wheat and potato) experienced the lowest impact in terms of yield loss with respect to the baseline, with even some positive effects, especially in Sicily where both wheat and barley showed a general increase of 9% as compared to the baseline, while potato increased up to + 17%. Amongst perennial crops, olive tree showed low variation under RCP 4.5, but on average increased by 7% under RCP 8.5 on the three islands. Climate change had a detrimental effect specifically on tomato (− 2% on average in RCP 8.5 and 4.5 on the three islands) and grapevine (− 7%). The use of different sowing dates, or different varieties, revealed that for winter crops early autumn sowing is still the best option for producing wheat and barley in future periods on the three islands under both future scenarios. For tomato and potato, advancing sowing date to early winter is a winning strategy that may even increase final yield (+ 9% for tomato and + 17% for potato, on average). For grapevine, the use of late varieties, while suffering the most from increasing temperatures and reduced rainfall (− 15%, on average), is still a valuable option to keep high yield levels with respect to earlier varieties, which even if showing some increases with respect to the baseline have a generally much lower production level. The same may be applied to olive tree although the production differences between late and early varieties are less evident and climate change exerts a favourable influence (+ 4 and + 3% for early and late varieties, respectively)
- …