1,808 research outputs found

    Enhanced quantized current driven by surface acoustic waves

    Full text link
    We present the experimental realization of different approaches to increase the amount of quantized current which is driven by surface acoustic waves through split gate structures in a two dimensional electron gas. Samples with driving frequencies of up to 4.7 GHz have been fabricated without a deterioration of the precision of the current steps, and a parallelization of two channels with correspondingly doubled current values have been achieved. We discuss theoretical and technological limitations of these approaches for metrological applications as well as for quantum logics.Comment: 3pages, 4eps-figure

    Plume motion and large-scale circulation in a cylindrical Rayleigh-B\'enard cell

    Full text link
    We used the time correlation of shadowgraph images to determine the angle Θ\Theta of the horizontal component of the plume velocity above (below) the center of the bottom (top) plate of a cylindrical Rayleigh-B\'enard cell of aspect ratio Γ≡D/L=1\Gamma \equiv D/L = 1 (DD is the diameter and L≃87L \simeq 87 mm the height) in the Rayleigh-number range 7×107≤R≤3×1097\times 10^7 \leq R \leq 3\times 10^{9} for a Prandtl number σ=6\sigma = 6. We expect that Θ\Theta gives the direction of the large-scale circulation. It oscillates time-periodically. Near the top and bottom plates Θ(t)\Theta(t) has the same frequency but is anti-correlated.Comment: 4 pages, 6 figure

    Stau detection at neutrino telescopes in scenarios with supersymmetric dark matter

    Get PDF
    We have studied the detection of long-lived staus at the IceCube neutrino telescope, after their production inside the Earth through the inelastic scattering of high energy neutrinos. The theoretical predictions for the stau flux are calculated in two scenarios in which the presence of long-lived staus is naturally associated to viable supersymmetric dark matter. Namely, we consider the cases with superWIMP (gravitino or axino) and neutralino dark matter (along the coannihilation region). In both scenarios the maximum value of the stau flux turns out to be about 1 event/yr in regions with a light stau. This is consistent with light gravitinos, with masses constrained by an upper limit which ranges from 0.2 to 15 GeV, depending on the stau mass. Likewise, it is compatible with axinos with a mass of about 1 GeV and a very low reheating temperature of order 100 GeV. In the case of the neutralino dark matter this favours regions with a low value of tan(beta), for which the neutralino-stau coannihilation region occurs for smaller values of the stau mass. Finally, we study the case of a general supergravity theory and show how for specific choices of non-universal soft parameters the predicted stau flux can increase moderately.Comment: 26 pages, 7 figures. References added and minor changes. Final version to appear in JCA

    Statistics and Characteristics of Spatio-Temporally Rare Intense Events in Complex Ginzburg-Landau Models

    Full text link
    We study the statistics and characteristics of rare intense events in two types of two dimensional Complex Ginzburg-Landau (CGL) equation based models. Our numerical simulations show finite amplitude collapse-like solutions which approach the infinite amplitude solutions of the nonlinear Schr\"{o}dinger (NLS) equation in an appropriate parameter regime. We also determine the probability distribution function (PDF) of the amplitude of the CGL solutions, which is found to be approximately described by a stretched exponential distribution, P(∣A∣)≈e−∣A∣ηP(|A|) \approx e^{-|A|^\eta}, where η<1\eta < 1. This non-Gaussian PDF is explained by the nonlinear characteristics of individual bursts combined with the statistics of bursts. Our results suggest a general picture in which an incoherent background of weakly interacting waves, occasionally, `by chance', initiates intense, coherent, self-reinforcing, highly nonlinear events.Comment: 7 pages, 9 figure

    Influence of the Dufour effect on convection in binary gas mixtures

    Full text link
    Linear and nonlinear properties of convection in binary fluid layers heated from below are investigated, in particular for gas parameters. A Galerkin approximation for realistic boundary conditions that describes stationary and oscillatory convection in the form of straight parallel rolls is used to determine the influence of the Dufour effect on the bifurcation behaviour of convective flow intensity, vertical heat current, and concentration mixing. The Dufour--induced changes in the bifurcation topology and the existence regimes of stationary and traveling wave convection are elucidated. To check the validity of the Galerkin results we compare with finite--difference numerical simulations of the full hydrodynamical field equations. Furthermore, we report on the scaling behaviour of linear properties of the stationary instability.Comment: 14 pages and 10 figures as uuencoded Postscript file (using uufiles

    The Domain Chaos Puzzle and the Calculation of the Structure Factor and Its Half-Width

    Full text link
    The disagreement of the scaling of the correlation length xi between experiment and the Ginzburg-Landau (GL) model for domain chaos was resolved. The Swift-Hohenberg (SH) domain-chaos model was integrated numerically to acquire test images to study the effect of a finite image-size on the extraction of xi from the structure factor (SF). The finite image size had a significant effect on the SF determined with the Fourier-transform (FT) method. The maximum entropy method (MEM) was able to overcome this finite image-size problem and produced fairly accurate SFs for the relatively small image sizes provided by experiments. Correlation lengths often have been determined from the second moment of the SF of chaotic patterns because the functional form of the SF is not known. Integration of several test functions provided analytic results indicating that this may not be a reliable method of extracting xi. For both a Gaussian and a squared SH form, the correlation length xibar=1/sigma, determined from the variance sigma^2 of the SF, has the same dependence on the control parameter epsilon as the length xi contained explicitly in the functional forms. However, for the SH and the Lorentzian forms we find xibar ~ xi^1/2. Results for xi determined from new experimental data by fitting the functional forms directly to the experimental SF yielded xi ~ epsilon^-nu} with nu ~= 1/4 for all four functions in the case of the FT method, but nu ~= 1/2, in agreement with the GL prediction, in the the case of the MEM. Over a wide range of epsilon and wave number k, the experimental SFs collapsed onto a unique curve when appropriately scaled by xi.Comment: 15 pages, 26 figures, 1 tabl

    Scaling of thermal conductivity of helium confined in pores

    Full text link
    We have studied the thermal conductivity of confined superfluids on a bar-like geometry. We use the planar magnet lattice model on a lattice H×H×LH\times H\times L with L≫HL \gg H. We have applied open boundary conditions on the bar sides (the confined directions of length HH) and periodic along the long direction. We have adopted a hybrid Monte Carlo algorithm to efficiently deal with the critical slowing down and in order to solve the dynamical equations of motion we use a discretization technique which introduces errors only O((δt)6)O((\delta t)^6) in the time step δt\delta t. Our results demonstrate the validity of scaling using known values of the critical exponents and we obtained the scaling function of the thermal resistivity. We find that our results for the thermal resistivity scaling function are in very good agreement with the available experimental results for pores using the tempComment: 5 two-column pages, 3 figures, Revtex

    Pattern selection as a nonlinear eigenvalue problem

    Full text link
    A unique pattern selection in the absolutely unstable regime of driven, nonlinear, open-flow systems is reviewed. It has recently been found in numerical simulations of propagating vortex structures occuring in Taylor-Couette and Rayleigh-Benard systems subject to an externally imposed through-flow. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system length. They do, however, depend on the boundary conditions in addition to the driving rate and the through-flow rate. Our analysis of the Ginzburg-Landau amplitude equation elucidates how the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that of linear front propagation. PACS: 47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 18 pages in Postsript format including 5 figures, to appear in: Lecture Notes in Physics, "Nonlinear Physics of Complex Sytems -- Current Status and Future Trends", Eds. J. Parisi, S. C. Mueller, and W. Zimmermann (Springer, Berlin, 1996

    Temporal Modulation of the Control Parameter in Electroconvection in the Nematic Liquid Crystal I52

    Full text link
    I report on the effects of a periodic modulation of the control parameter on electroconvection in the nematic liquid crystal I52. Without modulation, the primary bifurcation from the uniform state is a direct transition to a state of spatiotemporal chaos. This state is the result of the interaction of four, degenerate traveling modes: right and left zig and zag rolls. Periodic modulations of the driving voltage at approximately twice the traveling frequency are used. For a large enough modulation amplitude, standing waves that consist of only zig or zag rolls are stabilized. The standing waves exhibit regular behavior in space and time. Therefore, modulation of the control parameter represents a method of eliminating spatiotemporal chaos. As the modulation frequency is varied away from twice the traveling frequency, standing waves that are a superposition of zig and zag rolls, i.e. standing rectangles, are observed. These results are compared with existing predictions based on coupled complex Ginzburg-Landau equations

    Universal Algebraic Relaxation of Velocity and Phase in Pulled Fronts generating Periodic or Chaotic States

    Get PDF
    We investigate the asymptotic relaxation of so-called pulled fronts propagating into an unstable state. The ``leading edge representation'' of the equation of motion reveals the universal nature of their propagation mechanism and allows us to generalize the universal algebraic velocity relaxation of uniformly translating fronts to fronts, that generate periodic or even chaotic states. Such fronts in addition exhibit a universal algebraic phase relaxation. We numerically verify our analytical predictions for the Swift-Hohenberg and the Complex Ginzburg Landau equation.Comment: 4 pages Revtex, 2 figures, submitted to Phys. Rev. Let
    • …
    corecore