825 research outputs found
The Apollo 17 region: A compositional overview
Apollo 17 is located at a mare/highland boundary where the surface shows significant compositional heterogeneities. The composition of surface materials is estimated by analyzing their spectral/chemical correlations. Based on this spectral/chemical analysis, the chemical and normative mineralogical composition of two highland units and three mare units has been estimated
In situ mineralogical-chemical analysis of Martian materials at landing/roving sites by active and passive remote sensing methods
Remote sensing of the Martian surface from the ground and from orbiting spacecraft has provided some first-order insight into the mineralogical-chemical composition and the weathering state of Martian surface materials. Much more detailed information can be gathered from performing such measurements in situ at the landing sites or from a rover in combination with analogous measurements from orbit. Measurements in the wavelength range of approximately 0.3 to 12.0 micrometers appear to be suitable to characterize much of the physical, mineralogical, petrological, and chemical properties of Martian surface materials and the weathering and other alteration processes that have acted on them. It is of particular importance to carry out measurements at the same time over a broad wavelength range since the reflectance signatures are caused by different effects and hence give different and complementing information. It appears particularly useful to employ a combination of active and passive methods because the use of active laser spectroscopy allows the obtaining of specific information on thermal infrared reflectance of surface materials. It seems to be evident that a spectrometric survey of Martian materials has to be focused on the analysis of altered and fresh mafic materials and rocks, water-bearing silicates, and possibly carbonates
Preliminary results of spectral reflectance studies of tycho crater
The preliminary analysis and interpretation of near infrared spectra obtained for both the interior and exterior deposits associated with the Tycho crater is presented. Specific objectives were: (1) to determine the composition and stratigraphy of the highland crust in the Tycho target site; (2) to determine the likely composition of the primary ejecta which may be present in ray deposits; (3) to investigate the nature of spectral units defined in previous studies; (4) to further investigate the nature and origin of both the bright and dark haloes around the rim crest; and (5) to compare the compositions determined for the Tycho units with those of the Aristarchus crater as well as typical highland deposits. The spectra obtained for the interior areas exhibit similar spectral features. These include relatively strong 1 micron absorption bands whose minima are centered between 0.97 and 0.99 microns and shallow to intermediate continuum slopes. The spectra generally exhibit indications of a 1.3 micron feature consistent with the presence of Fe(2+) bearing plagioclase feldspar. The strong 1 micron absorption features indicate a dominant high Ca clinopyroxene component. Results obtained from the ejecta deposits show that the spectrum of the inner, bright halo is almost identical with those obtained for interior units. The spectrum of the dark halo exhibits a wide, relatively shallow absorption feature centered at 1.01 microns, a 1.3 micron absorption, and a steep continuum slope. This spectrum is interpreted as indicating the presence of pyroxene, Fe-bearing feldspar, and a significant component of Fe-bearing impact melt glass. Finally, the spectra of spots inside Tycho show similarity with certain spectra for Aristarchus. However, the suite of spectra obtained for Tycho exhibits a different trend in terms of band center versus width
Mars Reconnaissance Orbiter Context Camera Updated In-Flight Calibration
The image data of the Context Camera (CTX) of the Mars Reconnaissance Orbiter require a flat-field correction that is currently available as a plain text file in the Planetary Data System “Calib” folders for all CTX Enhanced Data Record releases or automatically implemented as part of the ctxcal application of the Integrated Software for Images and Spectrometers (ISIS). We noticed (a) differences between these two flat-fields and (b) residual edge darkening (vignetting) after applying ctxcal. This work examines in detail the edge-darkening effect over time and creates a new improved flat-field calibration file to be implemented into the ISIS ctxcal application as a new default. We introduce a method to quantify the vignetting effect and its residuals after regular ISIS calibration. With the old calibration, the amount of residual edge-darkening is about eight percent. We prove that the new calibration does remove the effect completely, does not introduce any artifacts and qualitatively and quantitatively validate newly calibrated images. Mosaics produced with images that have been calibrated with our new flatfield show immediately less striping issues, without the application of any standard mosaicking-related tone-matching techniques
- …