5,037 research outputs found
Quantum Bit Commitment with a Composite Evidence
Entanglement-based attacks, which are subtle and powerful, are usually
believed to render quantum bit commitment insecure. We point out that the no-go
argument leading to this view implicitly assumes the evidence-of-commitment to
be a monolithic quantum system. We argue that more general evidence structures,
allowing for a composite, hybrid (classical-quantum) evidence, conduce to
improved security. In particular, we present and prove the security of the
following protocol: Bob sends Alice an anonymous state. She inscribes her
commitment by measuring part of it in the + (for ) or (for
) basis. She then communicates to him the (classical) measurement outcome
and the part-measured anonymous state interpolated into other, randomly
prepared qubits as her evidence-of-commitment.Comment: 6 pages, minor changes, journal reference adde
Self-Similar Blowup Solutions to the 2-Component Camassa-Holm Equations
In this article, we study the self-similar solutions of the 2-component
Camassa-Holm equations% \begin{equation} \left\{ \begin{array} [c]{c}%
\rho_{t}+u\rho_{x}+\rho u_{x}=0
m_{t}+2u_{x}m+um_{x}+\sigma\rho\rho_{x}=0 \end{array} \right. \end{equation}
with \begin{equation} m=u-\alpha^{2}u_{xx}. \end{equation} By the separation
method, we can obtain a class of blowup or global solutions for or
. In particular, for the integrable system with , we have the
global solutions:% \begin{equation} \left\{ \begin{array} [c]{c}%
\rho(t,x)=\left\{ \begin{array} [c]{c}% \frac{f\left( \eta\right)
}{a(3t)^{1/3}},\text{ for }\eta^{2}<\frac {\alpha^{2}}{\xi}
0,\text{ for }\eta^{2}\geq\frac{\alpha^{2}}{\xi}% \end{array} \right.
,u(t,x)=\frac{\overset{\cdot}{a}(3t)}{a(3t)}x
\overset{\cdot\cdot}{a}(s)-\frac{\xi}{3a(s)^{1/3}}=0,\text{ }a(0)=a_{0}%
>0,\text{ }\overset{\cdot}{a}(0)=a_{1}
f(\eta)=\xi\sqrt{-\frac{1}{\xi}\eta^{2}+\left( \frac{\alpha}{\xi}\right)
^{2}}% \end{array} \right. \end{equation}
where with and are
arbitrary constants.\newline Our analytical solutions could provide concrete
examples for testing the validation and stabilities of numerical methods for
the systems.Comment: 5 more figures can be found in the corresponding journal paper (J.
Math. Phys. 51, 093524 (2010) ). Key Words: 2-Component Camassa-Holm
Equations, Shallow Water System, Analytical Solutions, Blowup, Global,
Self-Similar, Separation Method, Construction of Solutions, Moving Boundar
Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses
Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources
Two-mode heterodyne phase detection
We present an experimental scheme that achieves ideal phase detection on a
two-mode field. The two modes and are the signal and image band modes
of an heterodyne detector, with the field approaching an eigenstate of the
photocurrent . The field is obtained by means of a
high-gain phase-insensitive amplifier followed by a high-transmissivity
beam-splitter with a strong local oscillator at the frequency of one of the two
modes.Comment: 3 pages, 1 figur
Stable hydrogen and carbon isotope ratios of extractable hydrocarbons in the Murchison meteorite
A fairly fool-proof method to ensure that the compounds isolated from meteorites are truly part of the meteorites and not an artifact introduced by exposure to the terrestrial environment, storage, or handling is presented. The stable carbon and hydrogen isotope ratios in several of the chemical compounds extracted from the Murchison meteorite were measured. The results obtained by studying the amino acids in this meteorite gave very unusual hydrogen and carbon isotope ratios. The technique was extended to the different classes of hydrocarbons and the hydrocarbons were isolated using a variety of separation techniques. The results and methods used in this investigation are described in this two page paper
Cloning of Gaussian states by linear optics
We analyze in details a scheme for cloning of Gaussian states based on linear
optical components and homodyne detection recently demonstrated by U. L.
Andersen et al. [PRL 94 240503 (2005)]. The input-output fidelity is evaluated
for a generic (pure or mixed) Gaussian state taking into account the effect of
non-unit quantum efficiency and unbalanced mode-mixing. In addition, since in
most quantum information protocols the covariance matrix of the set of input
states is not perfectly known, we evaluate the average cloning fidelity for
classes of Gaussian states with the degree of squeezing and the number of
thermal photons being only partially known.Comment: 8 pages, 7 figure
Minimum output entropy of bosonic channels: a conjecture
The von Neumann entropy at the output of a bosonic channel with thermal noise
is analyzed. Coherent-state inputs are conjectured to minimize this output
entropy. Physical and mathematical evidence in support of the conjecture is
provided. A stronger conjecture--that output states resulting from
coherent-state inputs majorize the output states from other inputs--is also
discussed.Comment: 15 pages, 12 figure
First-Principles Approach to Electrorotation Assay
We have presented a theoretical study of electrorotation assay based on the
spectral representation theory. We consider unshelled and shelled spheroidal
particles as an extension to spherical ones. From the theoretical analysis, we
find that the coating can change the characteristic frequency at which the
maximum rotational angular velocity occurs. The shift in the characteristic
frequency is attributed to a change in the dielectric properties of the
bead-coating complex with respect to those of the uncoated particles. By
adjusting the dielectric properties and the thickness of the coating, it is
possible to obtain good agreement between our theoretical predictions and the
assay data.Comment: 17 pages, 4 eps figures; minor revisions, accepted for publications
by J. Phys.: Condens. Matte
Light atom quantum oscillations in UC and US
High energy vibrational scattering in the binary systems UC and US is
measured using time-of-flight inelastic neutron scattering. A clear set of
well-defined peaks equally separated in energy is observed in UC, corresponding
to harmonic oscillations of the light C atoms in a cage of heavy U atoms. The
scattering is much weaker in US and only a few oscillator peaks are visible. We
show how the difference between the materials can be understood by considering
the neutron scattering lengths and masses of the lighter atoms. Monte Carlo ray
tracing is used to simulate the scattering, with near quantitative agreement
with the data in UC, and some differences with US. The possibility of observing
anharmonicity and anisotropy in the potentials of the light atoms is
investigated in UC. Overall the observed data is well accounted for by
considering each light atom as a single atom isotropic quantum harmonic
oscillator.Comment: 10 pages, 8 figure
- …