1,544 research outputs found

    Immediate effects of microclimate modification enhance native shrub encroachment

    Get PDF
    Shrubs have become more dense and expanded beyond their range all over the world for a variety of reasons including increased temperatures, overgrazing, and alteration of historical fire regime. Native shrubs have been encroaching on Virginia barrier island grasslands for over half a century for unknown reasons. Species composition, soil nutrients, leaf area index (LAI), and ground and air temperature were recorded across the shrub to grass transition and at free-standing shrubs in a coastal grassland in order to determine the effect of shrub encroachment on plant community and microclimate. Species richness was significantly lower inside shrub thickets. Soil water content, organic matter, nitrogen (N), carbon (C), and LAI were higher in shrub thickets and free-standing shrubs compared to grasslands. Summer and fall maximum temperatures were lower and more moderate where shrubs were present. Fall and winter minimum temperatures were highest inside shrub thickets. Native shrubs impact microclimate and species composition immediately upon encroachment. These shrubs lower overall species composition, increase soil nutrients and moisture, moderate summer temperature, and increase winter temperature, which has consequences on a larger scale. As barrier islands are critical for protecting marsh and mainland habitats, understanding this mechanism for shrub expansion is important to predict future encroachment of shrubs and displacement of grassland habitat

    SUSY Ward identities for multi-gluon helicity amplitudes with massive quarks

    Full text link
    We use supersymmetric Ward identities to relate multi-gluon helicity amplitudes involving a pair of massive quarks to amplitudes with massive scalars. This allows to use the recent results for scalar amplitudes with an arbitrary number of gluons obtained by on-shell recursion relations to obtain scattering amplitudes involving top quarks.Comment: 22 pages, references adde

    Photon-Graviton Amplitudes from the Effective Action

    Full text link
    We report on the status of an ongoing effort to calculate the complete one-loop low-energy effective actions in Einstein-Maxwell theory with a massive scalar or spinor loop, and to use them for obtaining the explicit form of the corresponding M-graviton/N-photon amplitudes. We present explicit results for the effective actions at the one-graviton four-photon level, and for the amplitudes at the one-graviton two-photon level. As expected on general grounds, these amplitudes relate in a simple way to the corresponding four-photon amplitudes. We also derive the gravitational Ward identity for the 1PI one-graviton -- N photon amplitude.Comment: 9 pages, 2 figures, talk given by C. Schubert at "Supersymmetries and Quantum Symmetries - SQS`2011", JINR Dubna, July 18 - 23, 2011 (to appear in the Proceedings

    Multigluon tree amplitudes with a pair of massive fermions

    Full text link
    We consider the calculation of n-point multigluon tree amplitudes with a pair of massive fermions in QCD. We give the explicit transformation rules of this kind of massive fermion-pair amplitudes with respect to different reference momenta and check the correctness of them by SUSY Ward identities. Using these rules and onshell BCFW recursion relation, we calculate the analytic results of several n-point multigluon amplitudes.Comment: 15page

    SAGA: A project to automate the management of software production systems

    Get PDF
    The project to automate the management of software production systems is described. The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. Several major components of the SAGA system are completed to prototype form. The construction methods are described

    Recursive Calculation of One-Loop QCD Integral Coefficients

    Full text link
    We present a new procedure using on-shell recursion to determine coefficients of integral functions appearing in one-loop scattering amplitudes of gauge theories, including QCD. With this procedure, coefficients of integrals, including bubbles and triangles, can be determined without resorting to integration. We give criteria for avoiding spurious singularities and boundary terms that would invalidate the recursion. As an example where the criteria are satisfied, we obtain all cut-constructible contributions to the one-loop n-gluon scattering amplitude, A_n^{oneloop}(...--+++...), with split-helicity from an N=1 chiral multiplet and from a complex scalar. Using the supersymmetric decomposition, these are ingredients in the construction of QCD amplitudes with the same helicities. This method requires prior knowledge of amplitudes with sufficiently large numbers of legs as input. In many cases, these are already known in compact forms from the unitarity method.Comment: 36 pages; v2 clarification added and typos fixed, v3 typos fixe

    Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level

    Get PDF
    SAMURAI is a tool for the automated numerical evaluation of one-loop corrections to any scattering amplitudes within the dimensional-regularization scheme. It is based on the decomposition of the integrand according to the OPP-approach, extended to accommodate an implementation of the generalized d-dimensional unitarity-cuts technique, and uses a polynomial interpolation exploiting the Discrete Fourier Transform. SAMURAI can process integrands written either as numerator of Feynman diagrams or as product of tree-level amplitudes. We discuss some applications, among which the 6- and 8-photon scattering in QED, and the 6-quark scattering in QCD. SAMURAI has been implemented as a Fortran90 library, publicly available, and it could be a useful module for the systematic evaluation of the virtual corrections oriented towards automating next-to-leading order calculations relevant for the LHC phenomenology.Comment: 35 pages, 7 figure

    Scattering amplitudes with massive fermions using BCFW recursion

    Full text link
    We study the QCD scattering amplitudes for \bar{q}q \to gg and \bar{q}q \to ggg where q is a massive fermion. Using a particular choice of massive fermion spinor we are able to derive very compact expressions for the partial spin amplitudes for the 2 \to 2 process. We then investigate the corresponding 2 \to 3 amplitudes using the BCFW recursion technique. For the helicity conserving partial amplitudes we again derive very compact expressions, but were unable to treat the helicity-flip amplitudes recursively, except for the case where all the gluon helicities are the same. We therefore evaluate the remaining partial amplitudes using standard Feynman diagram techniques.Comment: 21 page
    • …
    corecore