2,406 research outputs found

    Enlarging and cooling the N\'eel state in an optical lattice

    Full text link
    We propose an experimental scheme to favor both the realization and the detection of the N\'eel state in a two-component gas of ultracold fermions in a three-dimensional simple-cubic optical lattice. By adding three compensating Gaussian laser beams to the standard three pairs of retroreflected lattice beams, and adjusting the relative waists and intensities of the beams, one can significantly enhance the size of the N\'eel state in the trap, thus increasing the signal of optical Bragg scattering. Furthermore, the additional beams provide for adjustment of the local chemical potential and the possibility to evaporatively cool the gas while in the lattice. Our proposals are relevant to other attempts to realize many-body quantum phases in optical lattices.Comment: 8 pages, 10 figures (significantly revised text and figures

    PAM9: COST COMPARISON OF TREATING RHEUMATOID ARTHRITIS PATIENTS WITH COX-2 INHIBITORS OR NSAIDS IN A MANAGED CARE POPULATION

    Get PDF

    Dynamics of wintering Norwegian spring-spawning herring at the entrance to Tysfjorden, December 1996

    Get PDF
    The entrance region to Tysfjorden was acoustically surveyed a total of eleven times during the December 1996 abundance survey of the spawning stock of Norwegian spring-spawning herring (Clupea harengus). The observations are summarized through maps of the distribution, vertical sections, and statistical measures of acoustic density in each of two strata. Experimental variograms are modeled, yielding parameter values that summarize the major properties of aggregation. The collective measures of density and aggregation portray a highly dynamic situation with strong diel variation but a general persistence of the fish distribution over the eleven days of its repeated observation

    Nernst effect in the vortex-liquid regime of a type-II superconductor

    Full text link
    We measure the transverse thermoelectric coefficient αxy\alpha_{xy} in simulations of type-II superconductors in the vortex liquid regime, using the time-dependent Ginzburg-Landau (TDGL) equation with thermal noise. Our results are in reasonably good quantitative agreement with experimental data on cuprate samples, suggesting that this simple model of superconducting fluctuations contains much of the physics behind the large Nernst effect observed in these materials.Comment: 6 pages. Expanded version of text. New Fig.

    Strong-disorder renormalization for interacting non-Abelian anyon systems in two dimensions

    Get PDF
    We consider the effect of quenched spatial disorder on systems of interacting, pinned non-Abelian anyons as might arise in disordered Hall samples at filling fractions \nu=5/2 or \nu=12/5. In one spatial dimension, such disordered anyon models have previously been shown to exhibit a hierarchy of infinite randomness phases. Here, we address systems in two spatial dimensions and report on the behavior of Ising and Fibonacci anyons under the numerical strong-disorder renormalization group (SDRG). In order to manage the topology-dependent interactions generated during the flow, we introduce a planar approximation to the SDRG treatment. We characterize this planar approximation by studying the flow of disordered hard-core bosons and the transverse field Ising model, where it successfully reproduces the known infinite randomness critical point with exponent \psi ~ 0.43. Our main conclusion for disordered anyon models in two spatial dimensions is that systems of Ising anyons as well as systems of Fibonacci anyons do not realize infinite randomness phases, but flow back to weaker disorder under the numerical SDRG treatment.Comment: 12 pages, 12 figures, 1 tabl

    Finite Size Effects in Vortex Localization

    Full text link
    The equilibrium properties of flux lines pinned by columnar disorder are studied, using the analogy with the time evolution of a diffusing scalar density in a randomly amplifying medium. Near H_{c1}, the physical features of the vortices in the localized phase are shown to be determined by the density of states near the band edge. As a result, H_{c1} is inversely proportional to the logarithm of the sample size, and the screening length of the perpendicular magnetic field decreases with temperature. For large tilt the extended ground state turns out to wander in the plane perpendicular to the defects with exponents corresponding to a directed polymer in a random medium, and the energy difference between two competing metastable states in this case is extensive. The divergence of the effective potential associated with strong pinning centers as the tilt approaches its critical value is discussed as well.Comment: 10 pages, 2 figure

    Correct extrapolation of overlap distribution in spin glasses

    Full text link
    We study in d=3 dimensions the short range Ising spin glass with Jij=+/-1 couplings at T=0. We show that the overlap distribution is non-trivial in the limit of large system size.Comment: 6 pages, 3 figure

    A microscopic approach to critical phenomena at interfaces: an application to complete wetting in the Ising model

    Full text link
    We study how the formalism of the Hierarchical Reference Theory (HRT) can be extended to inhomogeneous systems. HRT is a liquid state theory which implements the basic ideas of Wilson momentum shell renormalization group (RG) to microscopic Hamiltonians. In the case of homogeneous systems, HRT provides accurate results even in the critical region, where it reproduces scaling and non-classical critical exponents. We applied the HRT to study wetting critical phenomena in a planar geometry. Our formalism avoids the explicit definition of effective surface Hamiltonians but leads, close to the wetting transition, to the same renormalization group equation already studied by RG techiques. However, HRT also provides information on the non universal quantities because it does not require any preliminary coarse graining procedure. A simple approximation to the infinite HRT set of equations is discussed. The HRT evolution equation for the surface free energy is numerically integrated in a semi-infinite three-dimensional Ising model and the complete wetting phase transition is analyzed. A renormalization of the adsorption critical amplitude and of the wetting parameter is observed. Our results are compared to available Monte Carlo simulations.Comment: To be published in Phy. Rev.

    VELO Module Production - Laser Test and Noise Analysis

    Get PDF
    This note describes the algorithms used to detect problems by analyzing datasets taken at different stages of module production using the hybrid readout systems
    • …
    corecore