55 research outputs found

    Solar energy storage at an atomically defined organic-oxide hybrid interface

    Get PDF
    Molecular photoswitches provide an extremely simple solution for solar energy conversion and storage. To convert stored energy to electricity, however, the photoswitch has to be coupled to a semiconducting electrode. In this work, we report on the assembly of an operational solar-energy-storing organic-oxide hybrid interface, which consists of a tailor-made molecular photoswitch and an atomically-defined semiconducting oxide film. The synthesized norbornadiene derivative 2-cyano-3-(4-carboxyphenyl)norbornadiene (CNBD) was anchored to a well-ordered Co3O4(111) surface by physical vapor deposition in ultrahigh vacuum. Using a photochemical infrared reflection absorption spectroscopy experiment, we demonstrate that the anchored CNBD monolayer remains operational, i.e., can be photo-converted to its energy-rich counterpart 2-cyano-3-(4-carboxyphenyl)quadricyclane (CQC). We show that the activation barrier for energy release remains unaffected by the anchoring reaction and the anchored photoswitch can be charged and discharged with high reversibility. Our atomically-defined solar-energy-storing model interface enables detailed studies of energy conversion processes at organic/oxide hybrid interfaces

    Sucrose Monoester Micelles Size Determined by Fluorescence Correlation Spectroscopy (FCS)

    Get PDF
    One of the several uses of sucrose detergents, as well as other micelle forming detergents, is the solubilization of different membrane proteins. Accurate knowledge of the micelle properties, including size and shape, are needed to optimize the surfactant conditions for protein purification and membrane characterization. We synthesized sucrose esters having different numbers of methylene subunits on the substituent to correlate the number of methylene groups with the size of the corresponding micelles. We used Fluorescence Correlation Spectroscopy (FCS) and two photon excitation to determine the translational D of the micelles and calculate their corresponding hydrodynamic radius, Rh. As a fluorescent probe we used LAURDAN (6-dodecanoyl-2-dimethylaminonaphthalene), a dye highly fluorescent when integrated in the micelle and non-fluorescent in aqueous media. We found a linear correlation between the size of the tail and the hydrodynamic radius of the micelle for the series of detergents measured

    Internet of Things for Sustainable Forestry

    Get PDF
    Forests and grasslands play an important role in water and air purification, prevention of the soil erosion, and in provision of habitat to wildlife. Internet of Things has a tremendous potential to play a vital role in the forest ecosystem management and stability. The conservation of species and habitats, timber production, prevention of forest soil degradation, forest fire prediction, mitigation, and control can be attained through forest management using Internet of Things. The use and adoption of IoT in forest ecosystem management is challenging due to many factors. Vast geographical areas and limited resources in terms of budget and equipment are some of the limiting factors. In digital forestry, IoT deployment offers effective operations, control, and forecasts for soil erosion, fires, and undesirable depositions. In this chapter, IoT sensing and communication applications are presented for digital forestry systems. Different IoT systems for digital forest monitoring applications are also discussed

    SARS-CoV-2-related MIS-C: a key to the viral and genetic causes of Kawasaki disease?

    Get PDF
    corecore