6,897 research outputs found
New perturbative solutions of the Kerr-Newman dilatonic black hole field equations
This work describes new perturbative solutions to the classical,
four-dimensional Kerr--Newman dilaton black hole field equations. Our solutions
do not require the black hole to be slowly rotating. The unperturbed solution
is taken to be the ordinary Kerr solution, and the perturbation parameter is
effectively the square of the charge-to-mass ratio of the
Kerr--Newman black hole. We have uncovered a new, exact conjugation (mirror)
symmetry for the theory, which maps the small coupling sector to the strong
coupling sector (). We also calculate the gyromagnetic ratio of
the black hole.Comment: Revtex, 27 page
Statistical mechanics of Kerr-Newman dilaton black holes and the bootstrap condition
The Bekenstein-Hawking ``entropy'' of a Kerr-Newman dilaton black hole is
computed in a perturbative expansion in the charge-to-mass ratio. The most
probable configuration for a gas of such black holes is analyzed in the
microcanonical formalism and it is argued that it does not satisfy the
equipartition principle but a bootstrap condition. It is also suggested that
the present results are further support for an interpretation of black holes as
excitations of extended objects.Comment: RevTeX, 5 pages, 2 PS figures included (requires epsf), submitted to
Phys. Rev. Let
Extensiveness of business planning and firm survival: an examination into the drivers of success and survival for knowledge intensive start-up firms
A number of studies have found that writing a business plan increases the likelihood of firm survival. For instance, Liao and Gartner (2006) found that firms that completed a business plan were nearly three times more likely to launch their business than those that did not. On the contrary, other studies have found no association between writing a business plan and success. For example, Honig and Karlsson (2004) found evidence that entrepreneurs only write business plans because they are required to do so by investors, educators and advisors. While the evidence is mixed on the effectiveness of business planning, previous research has not examined individual elements of business plans. Thus, it is not clear which aspects (e.g., financial projections v. marketing strategy) of business planning are positively (or negatively) related to performance and survival. Our study addresses two main issues concerning the impact of business planning in firm survival: 1) Are surviving firms different in the extent of their business planning? 2) Which topical areas within business planning are more (or less) predictive of firm survival? To seek answers, we reconceptualize business planning along four dimensions: service/product description, marketing strategy, financial projections and organizational planning
Microfield Dynamics of Black Holes
The microcanonical treatment of black holes as opposed to the canonical
formulation is reviewed and some major differences are displayed. In particular
the decay rates are compared in the two different pictures.Comment: 22 pages, 4 figures, Revtex, Minor change in forma
Infinite average lifetime of an unstable bright state in the green fluorescent protein
The time evolution of the fluorescence intensity emitted by well-defined
ensembles of Green Fluorescent Proteins has been studied by using a standard
confocal microscope. In contrast with previous results obtained in single
molecule experiments, the photo-bleaching of the ensemble is well described by
a model based on Levy statistics. Moreover, this simple theoretical model
allows us to obtain information about the energy-scales involved in the aging
process.Comment: 4 pages, 4 figure
Ghost Busting: PT-Symmetric Interpretation of the Lee Model
The Lee model was introduced in the 1950s as an elementary quantum field
theory in which mass, wave function, and charge renormalization could be
carried out exactly. In early studies of this model it was found that there is
a critical value of g^2, the square of the renormalized coupling constant,
above which g_0^2, the square of the unrenormalized coupling constant, is
negative. Thus, for g^2 larger than this critical value, the Hamiltonian of the
Lee model becomes non-Hermitian. It was also discovered that in this
non-Hermitian regime a new state appears whose norm is negative. This state is
called a ghost state. It has always been assumed that in this ghost regime the
Lee model is an unacceptable quantum theory because unitarity appears to be
violated. However, in this regime while the Hamiltonian is not Hermitian, it
does possess PT symmetry. It has recently been discovered that a non-Hermitian
Hamiltonian having PT symmetry may define a quantum theory that is unitary. The
proof of unitarity requires the construction of a new time-independent operator
called C. In terms of C one can define a new inner product with respect to
which the norms of the states in the Hilbert space are positive. Furthermore,
it has been shown that time evolution in such a theory is unitary. In this
paper the C operator for the Lee model in the ghost regime is constructed
exactly in the V/N-theta sector. It is then shown that the ghost state has a
positive norm and that the Lee model is an acceptable unitary quantum field
theory for all values of g^2.Comment: 20 pages, 9 figure
Perturbations in the Kerr-Newman Dilatonic Black Hole Background: Maxwell Waves, the Dilaton Background and Gravitational Lensing
In this paper we continue the analysis of our previous papers and study the
affect of the existence of a non-trivial dilaton background on the propagation
of electromagnetic waves in the Kerr-Newman dilatonic black hole space-time.
For this purpose we again employ the double expansion in both the background
electric charge and the wave parameters of the relevant quantities in the
Newman-Penrose formalism and then identify the first order at which the dilaton
background enters the Maxwell equations. We then assume that gravitational and
dilatonic waves are negligible (at that order in the charge parameter) with
respect to electromagnetic waves and argue that this condition is consistent
with the solutions already found in the previous paper. Explicit expressions
are given for the asymptotic behavior of scattered waves, and a simple physical
model is proposed in order to test the effects. An expression for the relative
intensity is obtained for Reissner-Nordstrom dilaton black holes using
geometrical optics. A comparison with the approximation of geometrical optics
for Kerr-Newman dilaton black holes shows that at the order to which the
calculations are carried out gravitational lensing of optical images cannot
probe the dilaton background.Comment: 9 pages, 1 figur
Using volunteered observations to map human exposure to ticks.
Lyme borreliosis (LB) is the most prevalent tick-borne disease in Europe and its incidence has steadily increased over the last two decades. In the Netherlands alone, more than 20,000 citizens are affected by LB each year. Because of this, two Dutch citizen science projects were started to monitor tick bites. Both projects have collected nearly 50,000 geo-located tick bite reports over the period 2006-2016. The number of tick bite reports per area unit is a proxy of tick bite risk. This risk can also be modelled as the result of the interaction of hazard (e.g. tick activity) and human exposure (e.g. outdoor recreational activities). Multiple studies have focused on quantifying tick hazard. However, quantifying human exposure is a harder task. In this work, we make a first step to map human exposure to ticks by combining tick bite reports with a tick hazard model. Our results show human exposure to tick bites in all forested areas of the Netherlands. This information could facilitate the cooperation between public health specialists and forest managers to create better mitigation campaigns for tick-borne diseases, and it could also support the design of improved plans for ecosystem management
- …
