50 research outputs found

    Freeze-thaw Durability of Concrete Columns Wrapped with FRP and Subject to Corrosion-Like Expansion

    Get PDF
    Experiments were conducted to assess the effects of using fiber-reinforced polymer (FRP) wraps, with fibers oriented in the hoop direction, for rehabilitating corrosion-damaged columns. This paper reports findings related to the freeze-thaw durability of concrete specimens with round and square cross sections, wrapped with glass and carbon FRP, after they are subjected to an internal expansive force similar to that generated by corroding steel. The results of the experiment indicate that freeze-thaw cycles have no statistically significant effect on the compressive strength of glass- and carbon-wrapped specimens. Freeze-thaw conditioning generally reduced the longitudinal failure strain of wrapped specimens. The square wrapped specimens had lower compressive strength compared to the round specimens, even though the cross-sectional area of the square prisms was higher than that of the round cylinders. This is because of the reduced confinement provided by the wraps for square cross sections and stress concentrations that develop at the corners. Wrapped square prisms always failed by rupture of the wrap at a corner. A reduction of approximately 30 to 40% in failure stress was noted between wrapped specimens with round and square cross sections, respectively

    Anti-tuberculosis potential of bruceine: An in silico approach

    Get PDF
    Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. The bacterial enzyme pantothenate synthetase (PS) catalyzes the synthesis of pantothenate, a precursor of coenzyme A. Hence, targeting PS is a potential mechanism in the development of anti-tuberculosis drugs. Bruceine, a highly oxygenated natural quassinoid molecule, is isolated from plants of the Simaroubaceae family. The anti-tuberculosis potential of eleven bruceine (A, B, C, D, E, G, H, I, J, K and L) has been investigated by in silico approach. The molecular docking (AutodockVina) and drug-likeness (Lipinski’s rule of five) analyses identified bruceine D as a potential inhibitor. Further, it has shown six hydrogen bond interactions with the key amino acids residues of the target protein, Tyr82, His135, Lys160 and Asp161. The ring-A and -D has contributed two hydrogen bonds, while one each from ring-C and -E. The results reveal that bruceine D possesses druglikeness property and binding energy of -9.3 kcal/mol. The binding score similar to pantoyl adenylate suggests chemical modifications to enhance the protein inhibition potency. Bruceine D has a great potential to inhibit PS and could contribute to the tuberculosis drug discovery process

    Photoelectrochemical applications of electrochemical deposition of Ni2+-doped FeS2 thin films.

    Get PDF
    Different concentration (1–5 mol%) of Ni2+-doped FeS2 thin films were deposited by facile ECD technique. XRD pattern Ni2+ ion-doped FeS2 thin films were cubic structure with the high intensity plane (2 0 0). HRSEM images show that the undoped with 1–2 mol% Ni2+-doped FeS2 thin films were spherical-like morphology with aggregated grains. 3 mol% Ni2+-doped FeS2 thin film was aggregated with smaller size grains. Electrochemical impedance analysis reveals that the minimum charge transfer resistance (69 Ω) is obtained for 3 mol% Ni2+ ion-doped FeS2 thin films with exceptional conductivity character compared to other samples. Photoelectrochemical test indicates that 3 mol% Ni2+ ion-doped FeS2 thin film generates enhanced photocurrent response and faster immigration of photoinduced charge carriers compared to the other samples. It has been observed from CV analysis; the optimized 3 mol% Ni2+-doped FeS2 thin film delivers superior electrocatalytic performance of triiodide reduction

    Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering

    Get PDF
    This publication is the Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering from July 6-8, 2022. The EG-ICE International Workshop on Intelligent Computing in Engineering brings together international experts working on the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolution of challenges such as supporting multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways. &nbsp

    Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering

    Get PDF
    This publication is the Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering from July 6-8, 2022. The EG-ICE International Workshop on Intelligent Computing in Engineering brings together international experts working on the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolution of challenges such as supporting multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways. &nbsp

    Anti-tuberculosis potential of bruceine: An in silico approach

    No full text
    782-787Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. The bacterial enzyme pantothenate synthetase (PS) catalyzes the synthesis of pantothenate, a precursor of coenzyme A. Hence, targeting PS is a potential mechanism in the development of anti-tuberculosis drugs. Bruceine, a highly oxygenated natural quassinoid molecule, is isolated from plants of the Simaroubaceae family. The anti-tuberculosis potential of eleven bruceine (A, B, C, D, E, G, H, I, J, K and L) has been investigated by in silico approach. The molecular docking (AutodockVina) and drug-likeness (Lipinski’s rule of five) analyses identified bruceine D as a potential inhibitor. Further, it has shown six hydrogen bond interactions with the key amino acids residues of the target protein, Tyr82, His135, Lys160 and Asp161. The ring-A and -D has contributed two hydrogen bonds, while one each from ring-C and -E. The results reveal that bruceine D possesses druglikeness property and binding energy of -9.3 kcal/mol. The binding score similar to pantoyl adenylate suggests chemical modifications to enhance the protein inhibition potency. Bruceine D has a great potential to inhibit PS and could contribute to the tuberculosis drug discovery process

    Surfactant intercalated \alpha-hydroxides of cobalt and nickel and their delamination-restacking behavior in organic media

    No full text
    Dodecyl sulfate and dodecylbenzene sulfonate intercalated \alpha-hydroxides of nickel and cobalt were synthesized by ammonia precipitation. These solids delaminate to give a colloidal dispersion of layers in organic solvents such as 1-butanol. The dispersed layers could be reassembled either by evaporation of the colloid or by coagulation by the addition of a polar solvent
    corecore