249 research outputs found

    Effective construction of algebraic geometry codes

    Get PDF
    Résumé diponible dans le fichier PD

    Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution

    Get PDF
    International audienceNonlinear circular dichroism is studied in a solution of ruthenium-tris(bipyridyl) salt in one-beam and pump-probe experiments by tuning the laser wavelength across the circular dichroism structure. The dispersion of the nonlinear circular dichroism is measured. This wavelength dependence is well accounted for by a model calculation where nonlocality is included in the optical response of a two-coupled-oscillator system. This calculation also allows us to address the question of the contribution of electric quadrupolarization to the nonlinear optical activity of an isotropic liquid of chiral molecules. © 2002 The American Physical Societ

    Size-Dependent Surface Plasmon Dynamics in Metal Nanoparticles

    Full text link
    We study the effect of Coulomb correlations on the ultrafast optical dynamics of small metal particles. We demonstrate that a surface-induced dynamical screening of the electron-electron interactions leads to quasiparticle scattering with collective surface excitations. In noble-metal nanoparticles, it results in an interband resonant scattering of d-holes with surface plasmons. We show that this size-dependent many-body effect manifests itself in the differential absorption dynamics for frequencies close to the surface plasmon resonance. In particular, our self-consistent calculations reveal a strong frequency dependence of the relaxation, in agreement with recent femtosecond pump-probe experiments.Comment: 8 pages + 4 figures, final version accepted to PR

    Landau damping in thin films irradiated by a strong laser field

    Full text link
    The rate of linear collisionless damping (Landau damping) in a classical electron gas confined to a heated ionized thin film is calculated. The general expression for the imaginary part of the dielectric tensor in terms of the parameters of the single-particle self-consistent electron potential is obtained. For the case of a deep rectangular well, it is explicitly calculated as a function of the electron temperature in the two limiting cases of specular and diffuse reflection of the electrons from the boundary of the self-consistent potential. For realistic experimental parameters, the contribution of Landau damping to the heating of the electron subsystem is estimated. It is shown that for films with a thickness below about 100 nm and for moderate laser intensities it may be comparable with or even dominate over electron-ion collisions and inner ionization.Comment: 15 pages, 2 figure

    Geometry-Controlled Nonlinear Optical Response of Quantum Graphs

    Full text link
    We study for the first time the effect of the geometry of quantum wire networks on their nonlinear optical properties and show that for some geometries, the first hyperpolarizability is largely enhanced and the second hyperpolarizability is always negative or zero. We use a one-electron model with tight transverse confinement. In the limit of infinite transverse confinement, the transverse wavefunctions drop out of the hyperpolarizabilities, but their residual effects are essential to include in the sum rules. The effects of geometry are manifested in the projections of the transition moments of each wire segment onto the 2-D lab frame. Numerical optimization of the geometry of a loop leads to hyperpolarizabilities that rival the best chromophores. We suggest that a combination of geometry and quantum-confinement effects can lead to systems with ultralarge nonlinear response.Comment: To appear in J. Opt. Society of America

    Using a population-based approach to prevent hepatocellular cancer in New South Wales, Australia: effects on health services utilisation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Australians born in countries where hepatitis B infection is endemic are 6-12 times more likely to develop hepatocellular cancer (HCC) than Australian-born individuals. However, a program of screening, surveillance and treatment of chronic hepatitis B (CHB) in high risk populations could significantly reduce disease progression and death related to end-stage liver disease and HCC. Consequently we are implementing the <it>B Positive </it>pilot project, aiming to optimise the management of CHB in at-risk populations in south-west Sydney. Program participants receive routine care, enhanced disease surveillance or specialist referral, according to their stage of CHB infection, level of viral load and extent of liver injury. In this paper we examine the program's potential impact on health services utilisation in the study area.</p> <p>Methods</p> <p>Estimated numbers of CHB infections were derived from Australian Bureau of Statistics data and applying estimates of HBV prevalence rates from migrants' countries of birth. These figures were entered into a Markov model of disease progression, constructing a hypothetical cohort of Asian-born adults with CHB infection. We calculated the number of participants in different CHB disease states and estimated the numbers of GP and specialist consultations and liver ultrasound examinations the cohort would require annually over the life of the program.</p> <p>Results</p> <p>Assuming a 25% participation rate among the 5,800 local residents estimated to have chronic hepatitis B infection, approximately 750 people would require routine follow up, 260 enhanced disease surveillance and 210 specialist care during the first year after recruitment is completed. This translates into 5 additional appointments per year for each local GP, 25 for each specialist and 420 additional liver ultrasound examinations.</p> <p>Conclusions</p> <p>While the program will not greatly affect the volume of local GP consultations, it will lead to a significant increase in demand for specialist services. New models of CHB care may be required to aid program implementation and up scaling the program will need to factor in additional demands on health care utilisation in areas of high hepatitis B sero-prevalence.</p

    Learning Transcriptional Regulatory Relationships Using Sparse Graphical Models

    Get PDF
    Understanding the organization and function of transcriptional regulatory networks by analyzing high-throughput gene expression profiles is a key problem in computational biology. The challenges in this work are 1) the lack of complete knowledge of the regulatory relationship between the regulators and the associated genes, 2) the potential for spurious associations due to confounding factors, and 3) the number of parameters to learn is usually larger than the number of available microarray experiments. We present a sparse (L1 regularized) graphical model to address these challenges. Our model incorporates known transcription factors and introduces hidden variables to represent possible unknown transcription and confounding factors. The expression level of a gene is modeled as a linear combination of the expression levels of known transcription factors and hidden factors. Using gene expression data covering 39,296 oligonucleotide probes from 1109 human liver samples, we demonstrate that our model better predicts out-of-sample data than a model with no hidden variables. We also show that some of the gene sets associated with hidden variables are strongly correlated with Gene Ontology categories. The software including source code is available at http://grnl1.codeplex.com

    Likely Role of APOBEC3G-Mediated G-to-A Mutations in HIV-1 Evolution and Drug Resistance

    Get PDF
    The role of APOBEC3 (A3) protein family members in inhibiting retrovirus infection and mobile element retrotransposition is well established. However, the evolutionary effects these restriction factors may have had on active retroviruses such as HIV-1 are less well understood. An HIV-1 variant that has been highly G-to-A mutated is unlikely to be transmitted due to accumulation of deleterious mutations. However, G-to-A mutated hA3G target sequences within which the mutations are the least deleterious are more likely to survive selection pressure. Thus, among hA3G targets in HIV-1, the ratio of nonsynonymous to synonymous changes will increase with virus generations, leaving a footprint of past activity. To study such footprints in HIV-1 evolution, we developed an in silico model based on calculated hA3G target probabilities derived from G-to-A mutation sequence contexts in the literature. We simulated G-to-A changes iteratively in independent sequential HIV-1 infections until a stop codon was introduced into any gene. In addition to our simulation results, we observed higher ratios of nonsynonymous to synonymous mutation at hA3G targets in extant HIV-1 genomes than in their putative ancestral genomes, compared to random controls, implying that moderate levels of A3G-mediated G-to-A mutation have been a factor in HIV-1 evolution. Results from in vitro passaging experiments of HIV-1 modified to be highly susceptible to hA3G mutagenesis verified our simulation accuracy. We also used our simulation to examine the possible role of A3G-induced mutations in the origin of drug resistance. We found that hA3G activity could have been responsible for only a small increase in mutations at known drug resistance sites and propose that concerns for increased resistance to other antiviral drugs should not prevent Vif from being considered a suitable target for development of new drugs

    Discretization Provides a Conceptually Simple Tool to Build Expression Networks

    Get PDF
    Biomarker identification, using network methods, depends on finding regular co-expression patterns; the overall connectivity is of greater importance than any single relationship. A second requirement is a simple algorithm for ranking patients on how relevant a gene-set is. For both of these requirements discretized data helps to first identify gene cliques, and then to stratify patients
    • …
    corecore