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Wavelength dependence of nonlinear circular dichroism
in a chiral ruthenium-tris„bipyridyl… solution

H. Mesnil, M. C. Schanne-Klein, and F. Hache*
Laboratoire d’Optique et Biosciences, CNRS/INSERM/ENSTA/École Polytechnique, 91128 Palaiseau Cedex, France
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Nonlinear circular dichroism is studied in a solution of ruthenium-tris~bipyridyl! salt in one-beam and
pump-probe experiments by tuning the laser wavelength across the circular dichroism structure. The dispersion
of the nonlinear circular dichroism is measured. This wavelength dependence is well accounted for by a model
calculation where nonlocality is included in the optical response of a two-coupled-oscillator system. This
calculation also allows us to address the question of the contribution of electric quadrupolarization to the
nonlinear optical activity of an isotropic liquid of chiral molecules.

DOI: 10.1103/PhysRevA.66.013802 PACS number~s!: 42.62.Fi, 33.55.Ad, 42.65.An

I. INTRODUCTION
Chiral molecules that exist under two mirror-symmetrical

configurations~enantiomers! are known to play an important
role in biochemistry and therefore deserve a great deal of
attention from physicists. Linear optical properties have been
widely used, and optical activity~polarization rotation or cir-
cular dichroism! has proved to be a very sensitive probe of
chirality, but the application of nonlinear optics has emerged
only recently for the study of chiral molecules. Although
third-order nonlinear effects were predicted more than 30
years ago@1,2#, only a few nonlinear optical rotation experi-
ments were undertaken in the last decade@3,4#. In a recent
paper@5#, we demonstrated experimentally the existence of a
nonlinear circular dichroism in a chiral ruthenium-
tris~bipyridyl! salt by measuring the variation of the circular
dichroism ~CD! as a function of the light intensity and ob-
serving that this CD decreases when the light intensity in-
creases. This effect was shown to be in accordance with a
theoretical calculation@6# predicting a saturation of the CD
for a molecule described by a two- or three-level system.
This experiment demonstrated the relevance of third-order
nonlinear optics to study chiral molecules. In particular, it
opened up a large field of investigation, as the optical Kerr
effect is known to be a powerful technique in time-resolved
spectroscopy. Following this first experimental demonstra-
tion, we extended this work to a degenerate pump-probe con-
figuration and observed a pump-induced circular dichroism
in the same ruthenium sample@7#, again in agreement with
theoretical expectations. All these experiments were however
based on measurements at a unique wavelength; in this pa-
per, we examine the dependence of CD on wavelength.

In the following section, we present two sets of experi-
ments in the ruthenium sample. In a first set, we measure the
nonlinear CD induced by a unique beam as a function of the
wavelength for a tuning range~447–483 nm! spanning a
large part of the CD structure, whereas, in the second one,

we use a pump-probe configuration with a probe tunable
from 410 to 490 nm covering the whole CD spectrum. In
both cases, we resolved, for the first time to the best of our
knowledge, the dispersion of the nonlinear circular dichro-
ism. In order to describe our results, we develop in Sec. III a
simple model, based on two two-level systems, which ac-
counts well for the experimental CD spectrum of our sample.
By expanding the electromagnetic field in terms of molecular
extension in the nonlinear response calculation, we are able
to obtain in a direct manner the expressions of the nonlocal
contributions responsible for the chiral effects including lin-
ear as well as nonlinear terms. A very good agreement is
found between this calculation and the experimental results,
showing that we have a quite good understanding of the
origin of the nonlinear circular dichroism in our sample. This
calculation supports the evidence that the nonlinear optical
activity we observe originates mainly from a nonlinear elec-
tronic response as a result of the saturation of the absorption.

In this calculation, the introduction of nonlocality is
somewhat phenomenological and does not allow us to sepa-
rate magnetic dipolar contributions from electric quadrupolar
ones. We address this question in Sec. IV. Separating the
electric quadrupolar nonlocal terms from the magnetic dipo-
lar ones in our calculation, we show that even though the
quadrupolar effects cancel out for two-level systems as pre-
viously shown@6#, this cancellation is not general and we
demonstrate their existence for anharmonic oscillators. This
demonstrates that, as expected from general theoretical con-
siderations@2#, electric quadrupolarization can contribute to
the nonlinear optical activity of isotropic liquids.

II. EXPERIMENTAL RESULTS

A. One-beam experiment

The sample is a ruthenium~II !-tris~bipyridyl! salt ~RuTB!
which exists under two enantiomeric forms, denotedL and
D. The molecule structure is depicted in the inset of Fig. 1.
The optical transition we are interested in is a metal-to-
ligand charge transfer~MLCT! which gives rise to an ab-
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sorption band in the blue and a bisignate CD structure~see
Fig. 1!. Previous experiments on this molecule@5,7# have
shown that it behaves like a model molecule for which most
of the third-order~Kerr! nonlinear response comes from the
saturation of two-level systemlike transitions. Purely chiral
effects were found in a one-color experiment where an
intensity-dependent CD was observed@5#. The experimental
setup that we use to study wavelength effects in the chiral
nonlinear response is very similar to this one-beam experi-
ment: a photomultiplier tube~PMT! measures the transmis-
sion of a laser beam through a solution 1.531023M of
RuTB in ethanol placed in a circulating cell. The polarization
of the laser beam is varied from left to right circular at 80 Hz
by a longitudinal Pockels cell. This modulation allows us to
extract from the PMT signal the chiral response through a
lock-in ~LI ! detection technique and to precisely measure the
CD. The experiment then consists in measuring the CD as a
function of the light intensity to observe purely chiral effects
in the nonlinear response of the samples. The major differ-
ence compared to the former experiment is in the light
source we utilize, since the former source did not allow the
wavelength to be tuned across a significant part of the CD
structure. The beam in the present study is derived from a
sophisticated titanium-sapphire based femtosecond source
from which we extract 150 fs pulses tunable around 1.1mm
at 1 kHz repetition rate@8#. Performing sum-frequency gen-
eration of these pulses with 800 nm pulses originating from
the primary laser in a 2-mm-thick-BBO crystal~type I!, we
obtain 180 fs pulses tunable from 446 to 483 nm. This tuning
range allows us to span the red part of the CD spectrum. The
pulse energy is in the microjoule range, low enough to re-
strict the nonlinear response to the third-order and to avoid
thermal effects.

The following experimental procedure is repeated for all
the wavelengths. After very careful alignment of the Pockels
cell and of the various optical elements, we measure the
PMT and the LI signals as a function of the intensity and
deduce the CD@}(LI)/(PMT) #. This measurement is per-
formed on the two enantiomers as well as on the racemic
mixture to ensure that our setup is free of artifacts: we check

that the CD’s are symmetrical for the two enantiomers and
null for the racemic, independent of intensity. When plotting
CD vs incident intensity, we obtain straight lines from which
we can extract two pieces of information@5#: the value at
zero intensity gives the usual CD while the slope allows the
determination of the chiral nonlinear response through a co-
efficient K defined as follows.

Let us recall how we account for the saturation of the
absorption in the moderate intensity regime we are working
with: one writes the evolution of the light intensityI along
the z direction as

]I

]z
52~a1bI !I, ~2.1!

wherea is the linear absorption andb accounts for the non-
linear response. In the case of a saturation of the absorption,
b is negative. For chiral molecules, botha and b are ex-
pected to be different for the two handednesses of the light
and we write

a5a06Da, ~2.2!

b5b06Db, ~2.3!

where the ‘‘plus’’~minus! sign corresponds to the left~right!
circular polarization for a given enantiomer.Da is directly
connected to the CD whileDb describes the chiral nonlinear
response, responsible for the nonlinear circular dichroism
~NLCD! already observed@5#. The factorK that we deter-
mine directly from the experimental curves is defined as

K5

Db/b0

Da/a0
. ~2.4!

Note that this parameter that gives the relative magnitude
of the NLCD, is a molecular parameter independent of the
sample concentration or of the light intensity. If the absorp-
tion and the CD involve the same transitions, it is also inde-
pendent of such parameters as the oscillator strength or the
lifetime of the excited states, but depends only on the energy
level configuration@5#. It is therefore more readily compa-
rable to experiments thanDb/b0 which depends on a whole
set of parameters.

The experimental results are plotted in Fig. 1. First of all,
we note that the CD’s we measure from the signal at low
intensity as a function of the wavelength match the curve
obtained with a CD spectrometer as expected. Concerning
the ratioK, one can see that there is a strong variation of this
parameter with the wavelength, with a clear correlation with
the linear CD:K is minimum when the CD is maximum. The
values we measure, around 4, are in agreement with our pre-
vious one-color experiment@5#.

B. Pump-probe experiment

In order to fully exploit the potentialities of the Kerr tech-
niques, we have also developed a pump-probe experiment. In
@7#, we reported such an experiment in a degenerate configu-
ration where the pump and the probe were derived from the

FIG. 1. Experimental determination of the circular dichroism
~solid triangles! and of the ratioK ~open squares! obtained in the
NLCD measurements in our RuTB samples. The solid line is the
spectrum obtained with a CD spectrometer. The cell thickness is 2
mm. Inset: structure of the ruthenium(II)-tris(bipyridyl)21 ion.
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same beam. This experiment has allowed us to demonstrate
the existence of a pump-induced circular dichroism in a so-
lution of the above-mentioned RuTB salt. Here, we extend
this experiment to the case where the probe is continuously
tunable whereas the pump is fixed at 465 nm~close to a
maximum in the CD spectrum!. To obtain the tunable probe,
we pick up a part of the 800 nm pulses used in the generation
of the pump beam, double its frequency and generate a
white-light continuum by focusing this 400 nm beam in a
sapphire plate. After filtering the 400 nm frequency, we ob-
tain a pulse whose spectrum is almost flat from 410 to 490
nm. The pulse energy is in the nanojoule range and the time
duration, measured by cross correlation with the pump in a
1-mm-thick BBO crystal, was estimated to be 400 fs.

The setup is similar to the one described in@7#. The im-
portant point that we recall here is that the polarization of the
probe is modulated from left to right circular while the pump
is kept linearly polarized. Similarly to the one-beam experi-
ment, this polarization modulation allows us to measure the
CD. The principle of the experiment is then to measure this
CD as a function of the delay between the pump and the
probe. The zero delay is straightforwardly determined by the
time evolution of the PMT signal which displays a very clear
jump when the pump and the probe overlap. The transmis-
sion change and the induced CD do not change in time on a
few picosecond range@7#. Introducing the nonlinear coeffi-
cient bp-p similarly to Eq. ~2.1!, we can define the pump-
induced nonlinear absorptionA as a function of the probe
frequencyv,

A~v !5bp-p~v !Ip , ~2.5!

whereIp is the pump intensity. The subscriptp-p is intended
to differentiate this coefficient from its one-beam counter-
part: b}x (3)(v,2v,v) whereas bp-p}x (3)(v,
2vpump ,vpump). In the same way, we write

D~v !5Dbp-p~v !Ip ~2.6!

for the pump-induced CD. The experimental values of the
nonlinear absorption (bp-p) and CD (Dbp-p) coefficients are
plotted in Fig. 2 together with the linear absorption and CD
recovered from these measurements. The values are given in
absolute units (W21 cm2) with a precision of630% ~due to
the uncertainty in the pump energy and in the geometrical
factors!. We did not try to obtain more accurate values since
this uncertainty factors out of the ratio of the two nonlinear
coefficients. Looking at Fig. 2~a!, one can deduce that the
absorption band is composed of two different bands and we
mainly saturate the low-energy one with the 465 nm pump.
This translates in Fig. 2~b! by a dissymmetrical nonlinear CD
spectrum, where again the induced effect is stronger on the
low-energy side of the CD spectrum. Note that Fig. 2~b! is,
to the best of our knowledge, the first third-order nonlinear
CD spectrum ever measured.

For a more quantitative comparison with theory, we intro-
duce the ratioKp-p which we extract from our data as

Kp-p5

Dbp-p /bp-p

Da/a0
. ~2.7!

It is plotted in Fig. 3 together with the result of a model
calculation that we will introduce now.

III. MODEL CALCULATION

A. Choice of the model

We want now to develop a model calculation so as to be
able to understand the origin of the light-induced optical ac-
tivity and to reproduce qualitatively our experimental results.

FIG. 2. ~a! Linear ~squares! and nonlinear~dots! absorption,~b!

linear ~squares! and nonlinear~dots! CD measured in a pump-probe
experiment as a function of the probe wavelength. The pump wave-
length is 465 nm. The linear values are measured for a cell thick-
ness of 2 mm; the nonlinear coefficients are given in absolute units
(W21 cm2). The solid lines are the spectra measured using spectro-
photometers.

FIG. 3. RatioKp-p as a function of the probe wavelength~pump
wavelength5465 nm). The solid line is a theoretical fit obtained
with Eqs. ~3.25! and ~3.26! with d51.2 and Vpump50.5d ~see
text!.
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For that purpose, it is worth examining closely the optical
transition we are working with. This transition originates in a
charge transfer from the metallic ion toward the ligand, and
the final state is3MLCT @9#. However, the absorption band
corresponds to several close transitions. Our experimental
results about the saturation of the absorption@Fig. 2~a!#
clearly show that this band is not homogeneous: when pump-
ing on the low-energy side of the transition, the light-induced
structure is not centered on the absorption peak, but is shifted
on the low-energy side as well. Examining now the origin of
the CD, it appears that two transitions are involved, one po-
larized along the threefold axis of the molecule~symmetry
A2) and another one polarized in the perpendicular plane
~symmetryE) @10#. These two transitions are coupled with
an in-ligand transition~taking place in the UV region!, giv-
ing rise to two close opposite CD bands and to the bisignate
spectrum displayed in Fig. 1. One can furthermore calculate
that the rotational strengths of the two contributions are
equal in magnitude but opposite in sign@10#.

However, a detailed description of the electronic levels
involved in the absorption and CD spectra is only possible
through a complete density-functional calculation@11#. Ex-
tending this calculation to include excited states, saturation
effects or rapid transfer from1MLCT to 3MLCT @9# has
never been done and would be very involved. We therefore
prefer to introduce a phenomenological model to clarify the
experimental results. One way to model our system would be
to consider two independent transitions displaying opposite
rotational strengths. However, in this description, optical ac-
tivity would be introduced without any clear relationship
with the spatial configuration of the molecule. In particular,
implication of these geometrical effects in the nonlinear op-
tical response would not be easy to understand. We therefore
choose to describe our system with the degenerate coupled
oscillators ~Kuhn @12#! model in which optical activity is
directly deduced form the molecular configuration. In this
model, the molecule is described by two identical oscillators
separated by a distanced as represented in Fig. 4. The two
oscillators are chosen perpendicular, the first oscillator~la-
beledA) parallel to thex direction and the second oscillator
~B! parallel toy. The two oscillators are furthermore coupled,
for example, through dipole-dipole interaction. Note that this

description allows us to introduce straightforwardly such ef-
fects as the intensity dependence of the coupling parameters,
opening up the modeling of light-induced conformational
changes.

This model is clearly not the best one to describe quanti-
tatively our molecule but serves as a phenomenological de-
scription to allow prediction of the form of the absorption
and CD spectra. However, the phenomenological nature of
this model is not expected to change dramatically the inter-
pretation of the results since the most important point in our
discussions is the frequency position of the absorption and
CD structures and not the absolute magnitudes of the nonlin-
ear effects. Indeed, we have checked that introducingex
abrupto optical activity in two independent transitions gives
very similar results, but does not clarify how the optical ac-
tivity enters the optical nonlinear response.

We come now to the calculation of the linear and nonlin-
ear absorption and CD within this coupled-oscillator model.
Let us call una& (unb&) the quantum state of the oscillator
A(B). There are two degenerate excited statesu1a& and u1b&
depending on which oscillator is excited. However, these ex-
cited states are coupled and, in this basis, the Hamiltonian of
the system reads

FE V

V EG , ~3.1!

whereE is the energy of each oscillator andV is the coupling
energy. The Hamiltonian is not diagonal, and diagonalizing it
leads to working in a new basis, obtained from the previous
one by ap/4 rotation@the new axis system beingX, Y , Z
~see Fig. 4!#

u6&5

1

A2
~ u1a&6u1b&). ~3.2!

In this basis, the Hamiltonian is

FE1V 0

0 E2VG , ~3.3!

and we deal now with twoindependent nondegenerate oscil-
lators, as inferred above from our experimental results. We
further suppose that each of these two transitions behaves
like a two-level system. It is indeed the case for our RuTB
samples for which only saturation is observed@13#. In other
experimental situations, there can exist an excited-state ab-
sorption which is redshifted compared to the ground-state
absorption. In these cases, one has to consider the transitions
as anharmonic oscillators. Such a calculation with anhar-
monic oscillators, although not necessary to describe our ex-
perimental system, will be addressed in our discussion on
magnetic dipolar and electric quadrupolar contributions in
Sec. IV.

Finally, we end up with a very simple model consisting of
two independent two-level systems. We are interested in cal-
culating the energy transfer between the light and the mol-
ecules, introducing linear and third-order nonlinear response.
In order to account for the optical activity, we must go be-

FIG. 4. Representation of the molecule by the two-oscillator
model. OscillatorA(B) is along thex(y) direction.
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yond the usual local approximation, which means that we
cannot neglect the variation of the electromagnetic field
across the molecular extension. We will now develop the
calculation for such a system, starting by considering only
the local response. Nonlocal response will be added later.

B. Local response

In the case of the local response, the electromagnetic field
of the light is supposed constant over the molecular exten-
sion. This approximation is most often used, it amounts to
considering only the effects of the electric fieldF. In this
approximation, the polarizabilities are defined through the
expression of the light-induced dipolep as

p5«0aeeF1«0geeeeuFu2F, ~3.4!

where aee and geeee are the polarizability and the second
hyperpolarizability tensors, respectively, whose nonzero
components have the following expressions:

aXX
ee

5

m01
2

«0mG2

1

V1d2i
; aYY

ee
5

m01
2

«0mG2

1

V2d2i
,

~3.5!

gXXXX
eeee

52

m01
4

«0mG3G1

1

@~V1d !2
11#~V1d2i !

,

gYYYY
eeee

52

m01
4

«0mG3G1

1

@~V2d !2
11#~V2d2i !

. ~3.6!

In these expressions, we have introduced the relaxation
rate for the population (G1) and for the coherences (G), the
electric dipole moments of the transitions (m01) ~supposed
equal for the two transitions!, and we noteV6d the detun-
ing between the photon energy and the two transitions, nor-
malized to G @V5(E2\v)/\G, d5V/\G#. From these
microscopic expressions, one can deduce the macroscopic
susceptibilitiesxee andxeeee by averaging the above tensors
over an isotropic distribution. Both these tensors have only
one independent component in that particular case. With
their help, one calculates the energy transfer between the
light and the molecules which scales as

D5«0 Im@F* •xee•F1F* •xeeeeAFF* F#. ~3.7!

Introducing the molecule densityN, the linear absorption
is therefore

D (1)
5

Nm01
2

3mG2
uFu2F 1

~V1d !2
11

1

1

~V2d !2
11

G , ~3.8!

while the nonlinear absorption is

D (3)
52

Nm01
4

5mG3G1

uFu4F 1

@~V1d !2
11#2

1

1

@~V2d !2
11#2G .

~3.9!

These two expressions correspond to the expected expres-
sions for two independent two-level systems. Note that due
to the high symmetry of the tensors, these expressions are
independent of the electromagnetic field polarization.

C. Nonlocal response

Let us now proceed to include the nonlocal response of
the system, which is necessary to describe optical activity, or
more precisely in our case, the dependence of the absorption
processes with the handedness of the light polarization.

In this coupled-oscillator system, optical activity arises
from the electric dipoles of the two oscillators and there is no
need to introduce any magnetic dipoles. We will thus sup-
pose that the optical transitions corresponding to the two
oscillators are electric dipole allowed, but magnetic dipole
forbidden.

Examining more carefully the origin of optical activity in
such system, it is clear that it comes from the fact that the
electric fields are not the same at a given time for the two
oscillators as one must take into account the effect of the
propagation. A very convenient way to translate this into
equations is to consider that in thexyz frame, the electric
field is

Fx~0!2

d

2
¹zFx~0!,

Fy~0!1

d

2
¹zFy~0!, ~3.10!

Fz~0!,

which we write

F i5F i~0!1c i¹zF i ~3.11!

with

cx52d/2,cy51d/2,cz50. ~3.12!

Let us consider now the linear absorption of a given mol-
ecule:

d (1)
5«0 Im@F* •a

ee•F#, ~3.13!

which can be shown to be~assuming implicit summation
over repeated indices!

d (1)
5«0 Im$a i j

ee@F i* F j1c i~¹zF i* !F j1c jF i* ~¹zF j!#%.
~3.14!

Here we have neglected higher order terms in the gradient
of the electric field. Considering a plane waveF5Ae2ik•r,
we can rewrite Eq.~3.14! as

d (1)
5«0@a i j

ee
1ikza i jz

ee¹#A i* A j , ~3.15!

where we have introduced a nonlocal polarizability

a i jz
ee¹

5a i j
ee~2c i1c j!. ~3.16!
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Using Eq.~3.5! and changing the frame fromXYZ to xyz,
it is easy to calculatea i jz

ee¹ and to average it over an isotropic
distribution to obtain the nonlocal susceptibilityxee¹. We
suppose now that the electromagnetic wave propagates along
a given direction that we call ‘‘3.’’ The wave vector is there-
fore parallel to this direction while the electric field lies in
the (1,2) plane. The ‘‘nonlocal’’ linear absorption of this
light beam can be calculated as

DNLoc
5«0 Im (

i, j51,2
ik@x i j3

ee¹A i* A j# ~3.17!

from which we can obtain the expression of the CD. A left
~L! or right ~R! polarization being characterized by the fol-
lowing electric fields:

AL,R5

A

A2
~1,6i,0!, ~3.18!

we can apply Eq.~3.17! to get the

CD[DNLoc~L !2DNLoc~R !5D (1)

5

Nm01
2

3mG2
A2kdF 1

~V1d !2
11

2

1

~V2d !2
11

G .

~3.19!

It is straightforward to extend the above calculation to the
third-order response and to define a nonlocal hyperpolariz-
ability

g i jklz
eeee¹

5g i jkl
eeee~2c i1c j2ck1c l!, ~3.20!

in which case the nonlinear absorption of a given molecule is

d (3)
5@g i jkl

eeee
1ikzg i jklz

eeee¹#A i* A jAk* A l . ~3.21!

It is important to notice that in this description, we do not
separate the magnetic dipolar and the electric quadrupolar
contributions. Both area priori mixed in the nonlocal hyper-
polarizability, causing there to be no particular symmetry
rule concerning the tensor components. We will come back
to this problem in Sec. IV, where a comparison between this
two-level description with a three-level one will prove to be
instructive about the existence of electric quadrupolarization
effects in the third-order nonlinear response of chiral liquids.

An analogous treatment of the determination of linear CD
allows us to obtain the expression of the nonlinear CD as

D52

Nm01
4

5mG3G1

A42kdF 1

@~V1d !2
11#2

2

1

@~V2d !2
11#2G .

~3.22!

Looking at the above equations, it is easy to understand
the underlying physics. In case of the usual~i.e., local! re-
sponse, the linear and nonlinear absorptions of the two oscil-
lators are independent of the handedness of light and add
constructively whereas the nonlocal responses, very sensitive
to the handedness of light, are opposite for the two oscilla-

tors and must be substracted. This gives the well-known dis-
persive shape of CD curves~cf. Fig. 1!, and from Eq.~3.22!,
the same is true of the nonlinear CD curves.

From the above expressions, it is possible to express the
parameterK that we defined previously

K5

4

11S 2dV

V2
1d2

11
D 2 . ~3.23!

A plot of K as a function of the normalized detuning is
shown in Fig. 5~a! for d51.2. Changing the value ofd does
not change the overall shape of the curve but only changes
the value of the minimum, which can be calculated asKd

54(d2
11)/(2d2

11) @Fig. 5~b!#. The shape of the curve
can be understood as follows. A factor 2 inK can be traced
back to the expressions of the nonlocal polarizabilities: 2c i’s
are present in the linear term@Eq. ~3.16!# while 4 c i’s are
involved in the nonlinear one@Eq. ~3.20!#. It is a result of the
numbering of the gradient terms involved in the process. The
other factor 2 inK ~at V50) comes from the partial cancel-
lation in the CD bands which are not the same for the linear
and the nonlinear terms. However, whenV gets closer tod,
i.e., when one gets closer to resonance with one of the two
transitions, the relative weights of the two transitions change
and so do the interference effects. Note that if a unique tran-
sition was considered, one would obtain a value of 2 forK.

From this discussion, it is clear that the shape of the curve
K(V) is very sensitive to the configuration of the transitions
involved in the process. Let us now compare these calcula-
tions with the experimental results of Sec. II. First of all, we
see that the overall agreement is quite good. The experimen-

FIG. 5. ~a! Ratio K as a function of the detuningV for d51.2.
~b! Minimum value ofK as a function ofd.
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tal and model values ofK are of the same order and the
tendency of the experimental curve~Fig. 1! mimics the the-
oretical one@Fig. 5~a!#. We can be more quantitative. In or-
der to estimate the parameterd, we remark that the experi-
mental ratio between the maximum and the minimum values
of K is around 0.63, as determined from the theory ford
51.2 @cf. Fig. 5~b!#. We have, therefore, chosen this value to
fit our data. Results of the fits are displayed in Fig. 6, where
we have plotted the parameterK. The solid lines correspond
to the calculations and the dots to the experimental data, the
agreement is quite good. In particular, the shapes of the
curves are very well reproduced. This indicates that our sys-
tem cannot be represented by a unique two-level system but,
as far as optical activity is concerned, necessitates at least
two two-level systems. This simple description provides a
good explanation for the processes involved in the linear and
nonlinear optical activity of these molecules. The only dis-
crepancy is between the absolute values ofK which are
larger experimentally than theoretically by a factor of 1.5.
This likely comes from the fact that the metal-to-ligand
charge-transfer transition in RuTB involves, in reality, more
than two transitions@11# and that a model with more than
one pair of two-level systems would likely be more appro-
priate. Nevertheless, the shape of the CD andK curves is
mainly determined by the existence of such pairs.

D. Pump-probe configuration

It is straightforward to extend the above calculation to the
pump-probe experiments. The main difference is in the hy-
perpolarizability expressions. For a pump linearly polarized
alongX, the relevant components are

gXXXX
eeee

52

m01
4

«0mG3G1

1

@~Vpump1d !2
11#~V1d2i !

,

gYYXX
eeee

52

m01
4

«0mG3G1

1

@~Vpump2d !2
11#~V2d2i !

,

~3.24!

where we have introduced the detuning for the pump pho-
tons. The nonlinear absorption and CD now read

Dp-p
(3)

52

m01
4

5mG3G1

A4F 1

@~Vpump1d !2
11#@~V1d !2

11#

1

1

@~Vpump2d !2
11#@~V2d !2

11#
G , ~3.25!

Dp-p52

m01
4

5mG3G1

A42kdF 1

@~Vpump1d !2
11#@~V1d !2

11#

2

1

@~Vpump2d !2
11#@~V2d !2

11#
G . ~3.26!

From these expressions, for comparison to the experimen-
tal results, we obtain the coefficientKp-p as a function of the
probe frequency for a fixed pump frequency. In Fig. 3, we
have plotted the results for the same parameters as Fig. 6
(d51.2) together with the experimental data.Vpump is cho-
sen equal to 0.5d. Here again, the agreement is quite good,
except for an overall factor of 1.5. Note that this factor is the
same as utilized in Fig. 6. This confirms that the light-
induced CD’s in the one- or two-beam experiments originate
from the same mechanisms, well accounted for by our two
two-level system model.

IV. MAGNETIC DIPOLAR VS ELECTRIC
QUADRUPOLAR CONTRIBUTIONS

Our calculations allow us to clarify somewhat the role of
magnetic dipolar and electric quadrupolar contributions in
the third-order nonlinear response of an isotropic liquid of
chiral molecules. Indeed, the nonlocal contributions intro-
duced above may be separated in these two contributions
from a formal point of view. On the other hand, it is well
known that electric quadrupolar effects cancel out when iso-
tropically averaged forlinear optics. What about these con-
tributions in the third-order nonlinear response? Very general
arguments indicate that such quadrupole contributions should
exist in nonlinear optics@2#. We will now address this ques-
tion in view of our models.

First of all, we rewrite Eq.~3.21! as

d (3)
5g i jkl

eeeeA i* A jAk* A l1g i jkzl
eee¹eA i* A jAk* ¹zA l

1g i jzkl
ee¹eeA i* A j¹zAk* A l1g iz jkl

e¹eeeA i* ¹zA jAk* A l

1gzi jkl
¹eeee¹zA i* A jAk* A l ~4.1!

so as to keep track of which gradient out of the four possible
ones comes into play in the absorption process. Comparison
with Eqs.~3.20! and ~3.21! shows for example, that

g i jkzl
eee¹e

5c l g i jkl
eeee . ~4.2!

Similar relations exist for the other coefficients. From
these expressions, it is straightforward to introduce the elec-

FIG. 6. Fitting of the experimental data displayed in Fig. 1 with
Eq. ~3.23! for d51.2.
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tric quadrupolar and magnetic dipolar hyperpolarizabilities
by symmetrization and antisymmetrization ofg i jkzl

eee¹e ,

g i jkzl
eeeQ

5

1

2
@g i jkzl

eee¹e
1g i jklz

eee¹e#, ~4.3!

g i jkm
eeem

5

1

2
@g i jkzl

eee¹e
2g i jklz

eee¹e#. ~4.4!

(m obeying the relation«zlm51 with «: Levi-Civita tensor!.
Note that theg i jkzl

eeeQ is symmetrical with respect to the inter-
change of the last two indices. Here again, one obtains simi-
lar relations for the other hyperpolarizabilities. From these
microscopic quantities, one can obtain the isotropically aver-
aged susceptibilitiesxeeeQ andxeeem and access the relative
contributions of the electric quadrupolarization and of the
magnetic polarization in the third-order nonlinear response.

Performing this calculation for our previous model~two-
coupled two-level systems!, one determines thatxeeeQ

50
whereasxeeemÞ0, which means that there is no quadrupolar
contribution present. This is, however, not a general rule, but
a particular feature of two-level systems. We had already
demonstrated this point from a general quantum point of
view in @6#.

In order to verify that indeed quadrupolar effects can con-
tribute to the third-order nonlinear response, even though
these do not in linear optics, we now consider another model.
We suppose that the two coupled oscillators of our model do
not behave as two two-level systems, but as two anharmonic
oscillators. This changes the expression of the local hyper-
polarizability tensor which has now eight nonzero compo-
nents instead of two and which read, if we suppose that the
energy difference between the first and the second excited
states is close to that between the first excited state and the
ground state:
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From these expressions, it is straightforward to carry out the
calculation of the nonlocal hyperpolarizabilities and to de-
duce the electric quadrupolar and magnetic dipolar nonlinear
susceptibilities. Carrying out all the above calculations, we
determine that the results of Sec. III do not change qualita-
tively. However, the important point for our present discus-
sion is that we calculate thatxeeeQ as well asxeeem are both
nonzero and have the same order of magnitude. This demon-

strates that one cannot, in general, neglect the quadrupolar-
ization contributions in the third-order nonlinear response.

This feature is an illustration of the potential of nonlinear
optics to investigate more thoroughly molecular properties.
For example, one can consider molecules which do not have
any magnetic-dipole-allowed transitions but possess electric-
quadrupole-allowed ones. As is well known, these molecules
will not display any optical activity once istotropically dis-
persed in a solvent. However, nonlinear optical activity is
allowed and it is quite possible that these molecules show a
light-induced circular dichroism.

V. CONCLUSION

This paper is devoted to a close examination of the wave-
length dependence of the nonlinear circular dichroism in a
chiral salt of RuTB. A one-beam experiment using a tunable
laser source is used to measure the dispersion of the NLCD
which displays a strong variation across the linear CD struc-
ture. On the other hand, a pump-probe experiment with a
tunable probe allows us to determine the nonlinear CD spec-
trum. These features are then theoretically interpreted
through the development of a calculation based on a two-
coupled two-level system model which reproduces satisfac-
torily the experimental data when the nonlocality of the
light-matter interaction is considered. All the third-order
nonlinear effects derive from a saturation of the two optical
transitions, the effects of which add constructively for the
usual absorption effects while they interfere destructively as
far as~linear or nonlinear! optical activity is concerned. Our
calculation also allows us to address the question of the con-
tribution of electric quadrupolarization to the nonlinear re-
sponse of isotropic liquids of chiral molecules. Studying the
nonlocal response for a two-anharmonic-oscillator system,
we isolate such contributions, as expected from general
arguments@2#.

These experiments open up more techniques for the inves-
tigation of ultrafast conformational changes in molecules. In-
deed, it is clear from the coupled-oscillator model that the
CD is very sensitive to geometrical parameters such as the
distance between the oscillators or their relative orientation.
The time-resolved CD signal that can be measured in a
pump-probe experiment on varying the time delay between
the two beams will therefore be very sensitive to light-
induced changes in these parameters. This technique should
allow such changes to be followed in real time. It is however
important to keep in mind that purely electronic effects can
induce a nonlinear circular dichroism, independent of the
conformational changes under study. These effects are
clearly seen in this paper dealing with a ruthenium salt that
does not undergo any noticeable conformational change but
nevertheless displays a large nonlinear CD. The correct
agreement between our calculations and our experiments
clearly shows that the electronic nonlinear optical activity is
well understood and can be quantified through the measure-
ment of the nonlinear absorption, making it easier to sort out
the electronic and the conformational contributions to the
time-resolved CD. These experiments should provide very
sensitive techniques for the study of time-resolved conforma-
tional changes in chiral molecules.
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