450 research outputs found

    Richard Ernst (1933–2021)

    Get PDF
    Richard Ernst, pioneer of NMR spectroscopy and Nobel prize winner for chemistry, passed away on June 4th 2021 in his home town of Winterthur. He was among the developers of Fourier transform NMR spectroscopy, and later extended this to two- and higher-dimensional NMR spectroscopy. His work laid the foundations for present-day use of NMR spectroscopy as a universal tool to investigate materials and chemically or biologically relevant molecules

    Initialization and Readout of Spin Chains for Quantum Information Transport

    Get PDF
    Linear chains of spins acting as quantum wires are a promising approach to achieve scalable quantum information processors. Nuclear spins in apatite crystals provide an ideal test-bed for the experimental study of quantum information transport, as they closely emulate a one-dimensional spin chain. Nuclear Magnetic Resonance techniques can be used to drive the spin chain dynamics and probe the accompanying transport mechanisms. Here we demonstrate initialization and readout capabilities in these spin chains, even in the absence of single-spin addressability. These control schemes enable preparing desired states for quantum information transport and probing their evolution under the transport Hamiltonian. We further optimize the control schemes by a detailed analysis of 19^{19}F NMR lineshape

    Quantum Interference: From Kaons to Neutrinos (with Quantum Beats in between)

    Get PDF
    Using the vehicle of resolving an apparent paradox, a discussion of quantum interference is presented. The understanding of a number of different physical phenomena can be unified, in this context. These range from the neutral kaon system to massive neutrinos, not to mention quantum beats, Rydberg wave packets, and neutron gravity.Comment: 12 pages, LaTeX, 3 figure

    The Impact of Hydrogen Bonding on Amide 1H Chemical Shift Anisotropy Studied by Cross-Correlated Relaxation and Liquid Crystal NMR Spectroscopy

    Get PDF
    Site-specific (1)H chemical shift anisotropy (CSA) tensors have been derived for the well-ordered backbone amide moieties in the B3 domain of protein G (GB3). Experimental input data include residual chemical shift anisotropy (RCSA), measured in six mutants that align differently relative to the static magnetic field when dissolved in a liquid crystalline Pf1 suspension, and cross-correlated relaxation rates between the (1)H(N) CSA tensor and either the (1)H-(15)N, the (1)H-(13)C', or the (1)H-(13)C(alpha) dipolar interactions. Analyses with the assumption that the (1)H(N) CSA tensor is symmetric with respect to the peptide plane (three-parameter fit) or without this premise (five-parameter fit) yield very similar results, confirming the robustness of the experimental input data, and that, to a good approximation, one of the principal components orients orthogonal to the peptide plane. (1)H(N) CSA tensors are found to deviate strongly from axial symmetry, with the most shielded tensor component roughly parallel to the N-H vector, and the least shielded component orthogonal to the peptide plane. DFT calculations on pairs of N-methyl acetamide and acetamide in H-bonded geometries taken from the GB3 X-ray structure correlate with experimental data and indicate that H-bonding effects dominate variations in the (1)H(N) CSA. Using experimentally derived (1)H(N) CSA tensors, the optimal relaxation interference effect needed for narrowest (1)H(N) TROSY line widths is found at similar to 1200 MHz

    Purification and Structural Characterization of Siderophore (Corynebactin) from Corynebacterium diphtheriae

    Get PDF
    During infection, Corynebacterium diphtheriae must compete with host iron-sequestering mechanisms for iron. C. diphtheriae can acquire iron by a siderophore-dependent iron-uptake pathway, by uptake and degradation of heme, or both. Previous studies showed that production of siderophore (corynebactin) by C. diphtheriae is repressed under high-iron growth conditions by the iron-activated diphtheria toxin repressor (DtxR) and that partially purified corynebactin fails to react in chemical assays for catecholate or hydroxamate compounds. In this study, we purified corynebactin from supernatants of low-iron cultures of the siderophore-overproducing, DtxR-negative mutant strain C. diphtheriae C7(β) ΔdtxR by sequential anion-exchange chromatography on AG1-X2 and Source 15Q resins, followed by reverse-phase high-performance liquid chromatography (RP-HPLC) on Zorbax C8 resin. The Chrome Azurol S (CAS) chemical assay for siderophores was used to detect and measure corynebactin during purification, and the biological activity of purified corynebactin was shown by its ability to promote growth and iron uptake in siderophore-deficient mutant strains of C. diphtheriae under iron-limiting conditions. Mass spectrometry and NMR analysis demonstrated that corynebactin has a novel structure, consisting of a central lysine residue linked through its α- and ε- amino groups by amide bonds to the terminal carboxyl groups of two different citrate residues. Corynebactin from C. diphtheriae is structurally related to staphyloferrin A from Staphylococcus aureus and rhizoferrin from Rhizopus microsporus in which d-ornithine or 1,4-diaminobutane, respectively, replaces the central lysine residue that is present in corynebactin

    Cultural distance, mindfulness and passive xenophobia: Using Integrated Threat Theory to explore home higher education students' perspectives on 'internationalisation at home'

    Get PDF
    This paper addresses the question of interaction between home and international students using qualitative data from 100 home students at two 'teaching intensive' universities in the southwest of England. Stephan and Stephan's Integrated Threat Theory is used to analyse the data, finding evidence for all four types of threat that they predict when outgroups interact. It is found that home students perceive threats to their academic success and group identity from the presence of international students on the campus and in the classroom. These are linked to anxieties around 'mindful' forms of interaction and a taboo around the discussion of difference, leading to a 'passive xenophobia' for the majority. The paper concludes that Integrated Threat Theory is a useful tool in critiquing the 'internationalisation at home' agenda, making suggestions for policies and practices that may alleviate perceived threats, thereby improving the quality and outcomes of intercultural interaction. © 2010 British Educational Research Association

    Solution Structure of Kurtoxin: A Gating Modifier Selective for Cav3 Voltage-Gated Ca2+ Channels

    Get PDF

    Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    Get PDF
    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated

    Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways

    Get PDF
    BACKGROUND: Metabolic phenotyping has become an important 'bird's-eye-view' technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of 'top-down' chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. METHODOLOGY/PRINCIPAL FINDINGS: The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 (1)H and (13)C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each (13)C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient (13)C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. CONCLUSIONS/SIGNIFICANCE: Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of (13)C atoms of given metabolites on development-dependent changes in the 56 identified (13)C-HSQC signals, we have determined the changes in metabolic networks that are associated with energy and nitrogen metabolism
    corecore