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Abstract. Linear chains of spins acting as quantum wires are a promising
approach for achieving scalable quantum information processors. Nuclear spins
in apatite crystals provide an ideal test bed for the experimental study of
quantum information transport, as they closely emulate a one-dimensional spin
chain, while magnetic resonance techniques can be used to drive the spin
chain dynamics and probe the accompanying transport mechanisms. Here we
demonstrate initialization and readout capabilities in these spin chains, even
in the absence of single-spin addressability. These control schemes enable
preparing desired states for quantum information transport and probing their
evolution under the transport Hamiltonian. We further optimize the control
schemes by a detailed analysis of 19F NMR lineshape.
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1. Introduction

Control over small quantum systems and the ability to perform simple quantum algorithms
have been demonstrated on a variety of physical systems ranging from trapped ions [1]
and electrons [2], to neutral atoms and molecules in optical lattices [3], to superconducting
circuits [4] and semiconductor quantum dots [5], to nuclear and electronic spins [6–8]. Although
algorithms involving more than one qubit have been executed [9–14], a vital requirement
for a quantum computer—scalability while preserving fidelity—has not yet been achieved in
any physical system. The use of linear chains of spins as quantum wires to couple basic
memory units is a promising approach for addressing this issue [15, 16]. These spin chains
have the ability to transmit quantum information via the free evolution of the spins under their
mutual interaction [17–22]. While advances in fabrication techniques have rendered physical
implementation of spin wires possible [23–26], the level of precision available is not yet
adequate. Therefore, natural systems such as crystals where the spin position is precisely set
by nature are a preferred choice for exploring such applications.

Owing to their unique geometry, nuclear spin systems in apatite crystals have emerged
as a rich test bed to probe quasi-one-dimensional (1D) dynamics, including transport and
decoherence [27–30]. The apatite crystal wherein 19F (or 1H) nuclei are aligned along one axis
emulates a collection of 1D chains. The dynamics of these spin chains has been studied by
various nuclear magnetic resonance (NMR) techniques [31–33]. In our previous work [20, 34],
we have shown that the natural dipolar interaction among the spins can be manipulated via the
available collective control to simulate the Hamiltonian driving quantum transport. The lack
of single-spin addressability in these ensemble systems, however, seems to prevent creating
and measuring a single-spin excitation as required to study transport. Still, we demonstrated
experimentally in fluorapatite (FAp) [27–29] that one can prepare the spin system in an initial
state in which polarization is localized at the ends of the spin chain, a state that simulates well
the conditions for spin-excitation transport [34].
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In this paper, we take a further step toward enabling the experimental study of quantum
transport in spin chains: we introduce a technique for reading out the spins at the chain
extremities, and we show how to prepare a two-spin encoded state that is able to transfer
quantum information. Although initialization and readout are not perfect, they are sufficient
to study the transport dynamics under the double quantum (DQ) Hamiltonian [29, 35], as
proved by comparing the experimental results with theoretical models. We further validate
the addressability of the ends of the chains by probing the evolution of multiple quantum
coherences (MQCs) [36], which present well-characterized state-dependent signatures, and by
a detailed analysis of 19F lineshape in FAp.

The techniques we introduce achieve critical tasks for the experimental simulation of
quantum information transfer and will make it possible to explore errors affecting the transport
fidelities as well as control schemes for mitigating them in an experimental setting, where the
interactions among spins are not limited to those tractable by solvable models.

2. Transport in mixed-state spin chains

2.1. Spin chain dynamics

Linear chains of spin-1/2 particles have been proposed as quantum wires to transport quantum
information between distant nodes of a distributed quantum computing architecture. Transport
can occur even in the absence of individual control of the chain spins, as it is mediated
by the spin mutual interactions. In the most widely studied model, energy-conserving spin
flip-flops (mediated by the isotropic XY Hamiltonian) drive the transport of a single-spin
excitation [17–22]. This model has recently been extended to the case where the initial state
of the chain cannot be perfectly controlled, and thus it is found in a mixed state rather than in
its ground state [34, 37–40].

Spin chains that are in a maximally mixed state are particularly interesting from the point
of view of the experimental study of quantum information transfer. This state, corresponding
to infinite temperature, can be easily achieved experimentally and has been shown to provide
a direct simulation of pure state transport [34]. Additionally, extension to a mixed-state chain
enables using the so-called double quantum (DQ) Hamiltonian,

HDQ =

∑
j<`

b j`

2

(
σ x

j σ
x
` − σ

y
j σ

y
`

)
, (1)

to drive transport, although it does not conserve the number of spin excitations. Here b j` is the
dipolar coupling constant and σ x are the Pauli matrices. This Hamiltonian can be easily obtained
from the natural dipolar Hamiltonian with only collective control [20, 34] and is related to the
isotropic XY Hamiltonian (which instead cannot be generated from the dipolar interaction) via a
similarity transformation. The extension to mixed states and to the DQ Hamiltonian opens up the
possibility to study experimentally quantum information transport in nuclear spin chains with
NMR techniques. Under our experimental conditions (strong external magnetic field, B0 = 7 T,
and room temperature), the initial equilibrium state is the Zeeman thermal state,

ρ ′

th(0)∝ exp (−εσ z)≈ 1 − εσ z, (2)

where σ z
=

∑
j σ

z
j and ε = γ B0/kBT . Since the identity does not evolve and does not contribute

to the signal, we will focus on the deviation of the density operator from the maximally mixed
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state, δρ ∼ ρ− 1. In the absence of individual spin addressing, transport within a chain can be
studied by preparing a polarization excess at one end of the chain, that is, a state where one spin
at the chain extremity is polarized while the remaining spins are fully mixed, δρ ∼ σ z

1 . Because
of the symmetry between the two chain ends, the state we can prepare experimentally [27, 28],
which we call ‘end-polarized state’, is given by

δρend(0)= σ z
1 + σ z

N . (3)

The end-polarized state simulates the dynamics of a single-spin excitation in a pure-state spin
chain. This state can transfer a bit of classical information by encoding it in the sign of the
polarization. This encoding is, however, not enough to transfer quantum information, which
requires additional transfer of information about the phase coherence of a state. A two-qubit
encoding allows for the transport of a bit of quantum information [34, 39]. For transport via the
DQ Hamiltonian, this encoding is given by the basis |0〉

dq
L = |00〉 and |1〉

dq
L = |11〉. Here |0〉 (|1〉)

represents a spin-1/2 mz =
1
2 (− 1

2 ) eigenstate, whereas |00〉 and |11〉 refer to eigenstates of the
first and second spins in the chain. The operator basis for transport via mixed states under the
DQ Hamiltonian is thus given by

σ
dq
x L =

σ x
1 σ

x
2 − σ

y
1 σ

y
2

2
, σ

dq
yL =

σ
y

1 σ
x
2 + σ x

1 σ
y

2

2
,

σ
dq
zL =

σ z
1 + σ z

2

2
, 1dq

L =
1 + σ z

1σ
z
2

2
.

(4)

Starting from any of the above initial states, the evolution under the DQ Hamiltonian directly
simulates the transport dynamics within a chain.

In the limit of nearest-neighbor (NN) coupling only, the evolution under the DQ
Hamiltonian is exactly solvable by invoking a Jordan–Wigner mapping onto a system of free
fermions [29, 41, 42]. The resulting dynamics of most of the observables we analyzed in our
experiments has been reported in the literature (see, e.g., [29, 34]) and is reviewed in appendix A
for completeness. Isolated, linear spin chains with NN couplings is an accurate model for the
experiments, given the experimental time scales used [28]. Comparison of the theoretical model
with the experimental results thus allows us to validate our initialization and readout methods.

To gather more insights into the states generated by the evolution under the DQ
Hamiltonian, we experimentally measured multi-spin correlations via multiple quantum NMR
experiments that reveal the coherence order intensities of a state. Transitions between two
collective magnetization eigenstates |mi

z〉 and |m j
z 〉 can be classified by their coherence order n,

defined as the difference of their eigenvalues, n = mi
z − m j

z . More generally, for mixed states
the presence of a nonzero matrix element 〈m j

z |ρ|mi
z〉 indicates the presence of an n-quantum

coherence. While coherences other than ±1 cannot be detected inductively, MQC NMR
techniques allow measurement of multi-spin state dynamics by indirectly encoding their
signatures into single-spin terms (see appendix B). The dynamics of quantum coherence
intensities can also be calculated analytically in the limit of NN couplings [20, 34, 42].
We review these results in appendix B.

2.2. Preparing and reading out desired spin states

To probe the quantum transport dynamics it is necessary to prepare the spins at the ends of
the chain in a perturbed state (such as δρend), which is then left to evolve under the transport
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Hamiltonian. Furthermore, to observe the transport, measurement of the end-chain spins would
be desirable. Unfortunately, in a system of dipolarly coupled homonuclear spins (such as FAp)
it is not possible to achieve frequency or spatial addressability of individual spins. Still, here we
show that we can approximate these preparation and readout steps with the control at hand,
combining unitary and incoherent spin manipulation. A key observation is that even in the
absence of frequency addressability, the dynamics of the end-chain spins under the internal
dipolar Hamiltonian is different from the rest of the spins in the chain. Indeed, the spins at the
ends of the chain are coupled to only one NN, whereas spins in the rest of the chain have two
neighbors. This fact can be exploited to experimentally prepare the spins at the chain ends in a
desired state [27, 28] as well as subsequently read out this state as explained below.

When the initial thermal equilibrium state is rotated to the transverse plane by a π /2 pulse,
we create a state δρ =

∑N
k=1 σ

x
k which evolves under the internal dipolar Hamiltonian. Due to

the fewer numbers of couplings with neighboring spins, the spins at the end of the chain have
slower dynamics compared to the rest of the chain. Thus, one can select a particular time t1 such
that, whereas the state of the spins at the ends is still mainly σ x , the rest of the spins have evolved
to many-body correlations. A second π/2 pulse brings the magnetization of the end spins back
to the longitudinal axis, while an appropriate phase cycling scheme cancels out other terms in
the state [43, 44]. Starting from the thermal initial state δρth =

∑
k σ

z
k , we used the following

pulse sequence and appropriate phase cycling scheme to select the ends of the chains,

π/2|α — t1 — π/2|−α, (P1)

with α = {−x, y}, to average out terms that do not commute with the total magnetization σ z.
As the phase cycling does not cancel zero-quantum coherences, they will be the main source
of errors in the initialization scheme (see [27, 28] and section 3.1). For FAp crystals we found
that the optimal t1 time (which we will call ‘end-selection time’) is given by 30.3µs [27, 28].
Further details of how we optimized this time are given in section 3.4.

The end-selection scheme forms the basis for a strategy to prepare other states, presented
in equation (4), required for quantum information transport. In order to prepare these encoded
states experimentally, we use the following scheme. We first prepare the end-polarized state
δρend(0)= σ z

1 + σ z
N and then let the system evolve under the DQ Hamiltonian for a short time,

tdq = 14.7µs. The initialization sequence is thus

π/2|α— t1— π/2|β— DQγ , (P2)

where DQγ=x is propagation under UMQ(tdq)= e−iHDQtdq and DQγ=y under U †
MQ (obtained by

a π/2 phase shift of the pulses in the sequence described in section 3). For [α, β, γ ] =

[−x, x, x], the state after the sequence (P2) is approximately given by zero- and double-
quantum coherences, δρend(tdq)≈ σ

zq
1,2 + σ zq

n−1,n + σ dq
1,2 + σ dq

n−1,n, where σ zq
i, j = (σ x

i σ
y
j − σ

y
i σ

x
j ) and

σ
dq
i, j = (σ x

i σ
y
j + σ y

i σ
x
j ). Applying a DQ filter by the four-step phase cycling scheme,

[α, β, γ ] = {[−x, x, x]; [y,−y, x]; [−x,−x, y]; [y, y, y]} ,

cancels out the zero-quantum terms and selects the DQ terms, which is our desired state:
δρL

y ∝ σ
dq
1,2 + σ dq

n−1,n. Similarly, a π/4 collective rotation around z, prior to the DQ filter, is needed
to select the δρL

x operator.
A combination of unitary and incoherent spin control can also be used to read out the

spins at the end of the chain. In inductively measured NMR, the observable is the collective
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magnetization of the spin ensemble, σ z. To simulate the readout of a different observable,
the desired state must be prepared prior to acquisition. Thus, similar to state initialization, we
want to turn the collective magnetization σ z into the end-chain state, σ z

1 + σ z
N . We call this the

‘end-readout step’. We note that the sequence used for readout cannot in general be a simple
inversion of the end-selection step (which is not a unitary, reversible operation). Proper phase
cycling should ensure that the state prior to the end-selection sequence has contributions mainly
from population terms (∝ σ z

k ). For example, two-step phase cycling [43] is enough to select
populations and zero-quantum terms, which in turn can be eliminated by purging pulses [45].
In general, an efficient phase cycling scheme of the overall sequence can be selected by the
coherence transfer pathway method [44] based on the evolved state. Since the states produced
from evolution under the DQ Hamiltonian in 1D systems are already of the form ∝ σ z

k + σ dq
k,h ,

the sequence (P1) with a two-step phase cycling is enough for the end-readout step.

3. Experimental methods

Experiments were performed in a 7 T wide-bore magnet with a 300 MHz Bruker Avance
spectrometer and a probe tuned to 282.4 MHz for 19F measurement. A pure, single crystal of
fluorapatite [Ca5(PO4)3F] grown by the flux method was used for the measurements [46]. The
long relaxation time (T1 = 1100 s) of 19F spins indicates a low concentration of paramagnetic
impurities, but other defects interrupting the chains, such as vacancies, are expected to be
present. FAp crystals have a hexagonal geometry with space group P63/m. The 19F nuclei
form linear chains along the c-axis, each surrounded by six other chains. The intra-nuclear
spacing within a single chain is d = 0.3442 nm and chains are separated by D = 0.9367 nm.
When placed in a strong magnetic field, the nuclear spins interact via the secular dipolar
Hamiltonian,

Hdip =

n∑
j<`

b j`

[
σ z

j σ
z
` −

1

2

(
σ x

j σ
x
` + σ y

j σ
y
`

)]
, (5)

where the couplings depend on the relative positions Er j` as b j` = (µ0/16π)(γ 2h̄/r 3
j`)(1 −

3 cos2θ j`), with µ0 the standard magnetic constant, γ the gyromagnetic ratio, r j` the distance
between nucleus j and `, and θ j` the angle between Er j` and the z-axis. Due to 1/r 3 dependence
of dipolar coupling, the largest ratio of in-chain to cross-chain coupling is close to 40. For our
experiments, the crystal was aligned parallel to the external magnetic field in order to maximize
this ratio. It has been shown that under these settings and for short evolution times, couplings
across different chains can be neglected and the system can be considered as a collection of 1D
chains [28].

We performed two sets of experiments for each of the different initial states and readouts.
First we probed the transport dynamics driven by the DQ Hamiltonian. For this purpose, the
collective or end-chain magnetization was measured as we increased the evolution time t under
the DQ Hamiltonian. We used a standard eight-pulse sequence [47] to implement the DQ
Hamiltonian. The length of the π /2 pulse was 1.45µs. The evolution time was incremented
by varying the inter-pulse delay from 1 to 6.2µs and the number of loops was increased
from 1 to 12 (varying both the parameters enabled exploring a wider range of evolution times).
A recycle delay of 3000 s was used for these measurements. We restricted the evolution to a time
scale where the ideal model applies, and errors arising from leakage to other chains and next-NN
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couplings are small [28]. In this time scale, the initial perturbation travels across ≈17 spins [29]
and only the polarization starting from one end of the chain and moving away toward the other
end was observed; observing the polarization reach the other end is further complicated by the
distribution of chain lengths. However, since the dynamics of chains under the DQ Hamiltonian
shows appreciable differences between the thermal and the end-polarized state, experimental
verification of initial state preparation is possible even at these short time scales.

In the second set of experiments, we let the initial state evolve under the DQ Hamiltonian
and measured the MQCs to gather more information on the evolved state (see appendix B for
details of the experimental method). The inter-pulse delay was varied from 1 to 6µs and the
number of loops was increased from 1 to 3. We encoded coherences up to order 4 with a K = 4
step phase cycling. Since these measurements involve phase cycling, a shorter recycle delay of
1000 s could be used.

3.1. Experimental results: spin transport

Figure 1(a) shows the observed evolution of the collective magnetization σ z under the
DQ Hamiltonian, starting from the thermal initial state, Sth(t)∝ Tr {UMQδρthU †

MQσ
z
}, with

UMQ(t)= e−iHDQ(t). The data points were fitted with the analytical function (equation (A.1))
described in appendix A. In figure 1(b), we plot the system dynamics starting from an end-
polarized state, equation (3) (where polarization is localized at the ends of the chain), and
reading out the collective magnetization, Sse(t)∝ Tr {UMQδρendU †

MQσ
z
}. Figure 1(c) shows

a complementary measurement where we start from the thermal initial state, given by the
collective magnetization, and read out the ends of the chains after evolution under the DQ
Hamiltonian, Sre(t)∝ Tr {UMQδρthU †

MQδρend}. Both these data sets were fitted by the analytical
expression (A.2). As is evident from near-perfect fitting, the analytical model explains the
experimental data quite precisely.

Figures 1(a) and (b) show very different chain dynamics for the two initial states (with
and without end selection), giving an experimental validation of our initialization method.
Furthermore, the data and fittings for end selection (figure 1(b)) and end readout measurements
(figure 1(c)) are very similar. This indicates the robustness of the readout step. Finally,
figure 1(d) shows the evolution of the end-polarized initial state under the DQ Hamiltonian,
measured using the ‘end-readout step’ (P2), Ssre(t)∝ Tr {UMQδρendU †

MQδρend}. The fitting
function used is given in equation (A.3), which has the same form as the transport of a single
excitation in a pure state chain [19, 34]: this experiment is thus a direct simulation of spin
transport.

In all the above fittings, we used the following fitting parameters: a scalar multiplier,
a baseline constant, the NN dipolar coupling and a shift of the time axis. The shift of the
time axis is needed since there is a delay of a few µs between the end of the multiple pulse
sequence (ideally t = 0) and the measurement of the signal. From the fit we obtain a value
for the dipolar coupling of 8.161, 8.172, 8.048 and 8.63 × 103 rad s−1 for the four experiments,
respectively. Except for the last experiment, the other values agree well with those obtained
from similar measurements made on a different FAp crystal [28] and also with the theoretical
value b = 8.17 × 103 rad s−1 resulting from the known structure of FAp.

The small discrepancy in the fitting parameter for the last experiment, where we are
initializing and reading out the chain ends, can be explained by imperfections of the end-
select and readout schemes. Unfortunately, the phase cycling scheme does not cancel out zero-
quantum terms. Thus, residual polarization on spins 2 and N−1 as well as correlated states
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Figure 1. Evolution under the DQ Hamiltonian: (a) Initial state: δρth. Readout:
collective magnetization, σ z. (b) Initial state: δρend. Readout: collective
magnetization. (c) Initial state: δρth. Readout: end readout. (d) Initial state:
δρend. Readout: end readout. Circles are the experimental data (collective
magnetization in (a) and (b) and end of chain magnetization in (c) and (d)). The
measurement was carried out using a single scan in (a), two scans in (b) and (c)
for two-step phase cycling and four scans in (d) for four-step phase cycling. The
lines are the fits using the analytical model described in appendix A. Error bars
are given by the offset of the signal from zero. The fitting gives the following
values for the dipolar coupling: 8.165 (a), 8.172 (b), 8.048 (c) and 8.63 (d)
×103 rad s−1.

of the form σ z
j (σ

+
j−1σ

−

j+1 + σ−

j−1σ
+
j+1) contribute to errors, lowering the fidelity with the desired

state. This effect is more important for the last experiment, since errors in the two selection steps
accumulate. Moreover, the end readout scheme works well only if applied to the ideal state that
is expected after transport. The deviation of the prepared initial state from the ideal state further
contributes to the error in the final measured data. Still, the agreement of the experimental data
with the analytical model indicates that these errors are small and do not invalidate the scheme.

3.2. Experimental results: multiple quantum coherences

We present the results of the second set of experiments in figure 2, which shows the evolution
of the zero-, second- and fourth-order coherence intensities I ′

n(t), experimentally measured
for different initial states and readouts according to equation (B.2). Figure 2(a) shows the
usual MQC signal, obtained measuring the collective magnetization and starting from an initial
thermal state (equation (2)). The data points are fitted by functions (B.3) in appendix B. The
only parameter used in these fittings was the dipolar coupling constant, for which we obtained
the value b = 7.971 × 103 rad s−1. The data shown in figure 2(b) have been measured by first
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Figure 2. Evolution of MQCs I ′

n(t) (0Q blue squares, 2Q red triangles,
4Q green circles): (a) Initial state: δρth. Readout: collective magnetization.
(b) Initial state: δρend. Readout: collective magnetization. (c) Initial state: δρth

Readout: end-readout. (d) Initial state: δρend. Readout: end-readout. Circles are
the experimental data (collective magnetization in (a) and (b) and end of chain
magnetization in (c) and (d)). The measurement was carried out using a single
scan in (a), two scans in (b) and (c) for two-step phase cycling and four scans in
(d) for four-step phase cycling. The data points are fitted by analytical functions
(blue and red lines) obtained from the DQ Hamiltonian with NN couplings
(equations (B.3)–(B.5) for panels (a)–(d), respectively). The 4Q coherences
(which should be zero in the ideal model) were simply fitted with a constant.
The error bars are estimated from the deviation of first-order quantum coherence
from zero. Fitting of the data gives dipolar coupling: 7.971 (a), 8.077 (b), 8.031
(c) and 8.492 (d) ×103 rad s−1.

selecting the ends of the chain and then carrying out the MQC measurement where collective
magnetization is read out. Figure 2(c), on the other hand, shows the data for MQC measurements
starting from the thermal initial state but reading out only the spins at the chain ends. Both these
data were fitted by the analytical functions (B.4), giving b = 8.077 and 8.031 × 103 rad s−1,
respectively. This is in very good agreement with the values obtained from the quantum transport
measurements. We remark again that the results obtained from end-selection, figure 2(b), and
end-readout measurements, figure 2(c), are very similar, thus validating the effectiveness of the
readout step. The data for the case where we initialize the ends of the chains before letting the
system evolve under the DQ Hamiltonian and then read out the ends are shown in figure 2(d).
Good fitting of the data with equation (B.5) was obtained for b = 8.492 × 103 rad s−1 and
shifting the time axis by 15µs. As mentioned earlier, we expect the errors in selecting the
ends of the chains to add up in the experimental data, resulting in a slightly higher value of
the fitting parameter b. The first two data points in the above-mentioned figures were measured
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Figure 3. Experimental dynamics of the logical state δρL
y (equation (4)).

The logical initial state was prepared as described in section 2.2 and its
evolution under the DQ Hamiltonian was monitored by observing the collective
magnetization. Dots are the experimental data and lines are the fits using the
analytical model described in appendix A (equation (A.4)). The fitting of the
data points gives a dipolar coupling value of 7.551 × 103 rad s−1.

using a four-pulse sequence to implement the DQ Hamiltonian (instead of a standard eight-pulse
sequence), leading to greater error bars for these data points.

3.3. Quantum information transport

To demonstrate our ability to experimentally simulate not only the transport of classical
information, as encoded in the spin polarization, but also of quantum information, we prepared
and studied the evolution of one of the logical states in equation (4). The logical state δρL

y was
prepared by the scheme described in section 2.2 (similar schemes could be used to prepare
the other states in the operator basis). Figure 3 shows the evolution of this state under the
DQ Hamiltonian that simulates experimentally the transport of quantum information via a
maximally mixed quantum channel. The dynamics was monitored by measuring the collective
magnetization, SL

∝ Tr {UMQδρ
L
y U †

MQσ
z
}. The data points were fitted by the expression in

equation (A.4) giving the value of the dipolar coupling constant as 7.551 × 103 rad s−1. We
note that the scheme for preparing this logical state involves selecting the ends of the chain and
then creating MQC and filtering out all the terms except the DQ terms. The errors involved in
both these steps add up and result in deviation of the measured data points from the analytical
function. The experimental results, however, follow the expected analytical model and the
dipolar coupling constants obtained from these experiments agree very well with those obtained
from other measurements.

In all of the above-described measurements, where the ends of the chains were selected and
initialized, we used t1 = 30.3µs in the pulse sequence (P1). As described above, this value was
obtained by selecting the time when polarization of the spins at the ends of the chains is nonzero
while it has decayed to zero for the other spins, as a result of evolution under the internal dipolar
Hamiltonian. In order to confirm this value experimentally, we repeated the transport and MQC
measurements at different values of t1 (not shown here). We observed that t1 = 30.3µs gave
the best fittings with the analytical functions, pointing toward the fact that the fidelity of end
selection is highest for t1 = 30.3µs. This is further confirmed by a detailed 19F NMR lineshape
analysis as described in the next section.

New Journal of Physics 14 (2012) 083005 (http://www.njp.org/)

http://www.njp.org/


11

−20 −10 0 10 20 30

Frequency (kHz)

 

0.5µs 

20µs 

30µs 

35µs 

50 µs

(b) t1

−30 −20 −10 0 10 20 30

23.5µs 

30.3µs 

34.0µs 

41.0µs 

t1

Frequency (kHz)

 

(a)
0.0µs 

Figure 4. (a) Simulated 19F lineshapes for a chain of 11 spins, for the
thermal initial state (circles), the ideal end-polarized state (triangles) and for
an initial state prepared via a simulated P1 sequence, with varying t1 times.
(b) Experimentally measured 19F NMR lineshape after state initialization
performed with the sequence (P1) for various t1 times. Solid lines are for t1 = 30
and 35µs, which give the narrowest linewidth and the best state preparation.

3.4. 19F nuclear magnetic resonance lineshape analysis

A system comprising linear chains of spins, such as FAp, is of immense interest for NMR
lineshape calculations by virtue of the simplicity it offers as compared to a 3D system [48, 49].
The 19F spins in FAp have a characteristic three-peak lineshape, which shows strong angular
dependence [50]. In our study, we utilize this angular dependence to align the crystal parallel to
the external magnetic field in order to minimize inter-chain couplings.

The lineshape provides signatures not only of the system dimensionality, but also of
its initial state; thus we expect to see qualitative differences in the NMR spectra for the
thermal and end polarized states. We calculated the free induction decay (FID) for a chain
of N = 11 19F nuclear spins evolving under the secular dipolar Hamiltonian (equation (5)) with
coupling b = 8.1 × 103 rad s−1. These calculations were also performed for the end-polarized
state, obtained by simulating the sequence (P1) for different values of the end-selection time (t1).
The NMR spectra obtained from these simulations are shown in figure 4(a), together with the
lineshapes for the thermal state (equation (2)) and the ideal end-polarized state (equation (3)).
A few observations are worth mentioning. The NMR linewidth shows a progressive narrowing
as t1 is increased starting from t1 = 0µs (corresponding to the thermal state). The linewidth
is narrowest for t1 = 30.3µs and then starts increasing gradually, but now with an anti-phase
(dispersive) component. A simple explanation of these features can be obtained by considering
the signal as arising from a competition between the signal of the end-chain spins and the signal
of the spins in the bulk. The spins at the chain extremities are dipolarly coupled to only one spin;
hence, we expect a splitting of the NMR line into a doublet. The spins in the chain, instead, are
each coupled to two NNs and hence produce a broader NMR line, split into a triplet. As the
first contribution increases with increasing t1 time, the linewidth narrows. At even longer times
(t1 beyond 30.3µs), two-spin correlations are created that give rise to a dispersive spectrum
under subsequent dipolar Hamiltonian evolution. These anti-phase terms keep increasing
for longer t1 times. We observe that none of the simulated lines exactly replicates the
expected lineshape for the ideal end-polarized state. This is due to the less than 100%
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Figure 5. (a) The 19F NMR lineshape (for t1 µs) can be fitted by three Gaussian
lines. Individual Gaussian lines are shown as thin dotted lines; the sum of
the lines is thick red. (b) The 19F NMR lineshape (for t1 = 60µs) can be
fitted by three Gaussian lines out of which two lines have negative amplitude.
(c) Amplitude A1 of the first Gaussian line as a function of t1 used to fit the
experimental data (red squares) and simulated spectra (black line). (d) 19F NMR
lineshape measured for thermal (black, dotted) and end-polarized (red) initial
states using the pulse sequence P3.

fidelity of end-selection and initialization steps, as explained in section 3.1. The simulated
lineshapes are, however, in good agreement with the corresponding experimentally measured
lineshapes (figure 4(b)), apart from a slight asymmetry, which might have been introduced
by a misalignment of the crystal with respect to the magnetic field. In particular, the
experimental spectra for t1 = 30 and 35µs have a width very close to the ideal end-selected
spectrum.

In order to draw a quantitative comparison between simulated and measured NMR spectra,
we fit the lineshapes at different t1 times with a model comprising three Gaussian lines, at
frequencies shifted by the NN dipolar coupling. As shown in figure 5, both simulated and
experimental lineshapes could be fitted reasonably well with this model. Since the outer lines
in the Gaussian model arise only from the spins inside the chains, their amplitude is expected
to show a zero crossing at t1 where the chain extremities have the maximum contribution to the
measured lineshape and the bulk spin polarization has a very small contribution. In our data,
this is seen at 35µs, indicating that end selection has maximum fidelity for this value of t1. This
is in close agreement with the 30.3µs obtained from an optimization of the DQ-Hamiltonian
evolution fitting and used in our measurements.

In the lineshape analysis described above, all the NMR measurements were carried out
by using a π /2 pulse and measuring the resultant FID. This scheme reads out the collective
magnetization from all the nuclei within the chains. It would be interesting to isolate the signal
contribution from the nuclei located at the chain ends. This was achieved by means of the pulse
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sequence (P3),

P1—π/2—(τ )—π/2—P1, (P3)

where the end-selection step (sequence (P1)) is used to polarize as well as to read out the nuclei
at the chain ends. The selection and readout steps are separated by a variable delay (τ ) that
enables measurement of FID (evolution under the natural dipolar Hamiltonian) as a function of
time. Fourier transform of this FID results in an NMR lineshape where only the nuclei at the
chain ends contribute.

The measured lineshapes for thermal initial (t1 = 0µs) and end-polarized (t1 = 30.3µs)
states using the sequence (P3) are shown in figure 5(d). Due to the long T1 of 19F nuclei, it was
not possible to measure as many points as in standard FID measurements. This resulted in a low
resolution of the Fourier transformed signal, and hence the three characteristic peaks of FAp
lineshape are not properly resolved. Nonetheless, differences in the lineshape and line width
between the two signals are clearly visible.

4. Conclusion

In conclusion, we have studied spin initialization and readout techniques in linear chains
of nuclear spins and experimentally demonstrated partial addressability of spins at the ends
of the chain by means of NMR control schemes. We have shown that even though NMR
implementation allows only collective control and observables, we could achieve initialization
as well as readout capabilities through a combination of coherent and incoherent control. These
techniques can be used to prepare the state of relevance for quantum information transport as
well as to monitor the dynamics of the end-chain spins as it evolves under the DQ Hamiltonian
obtained via collective manipulation of the natural dipolar interaction. We validated our method
by comparing the experimental results with analytical solutions based on an idealized model,
which applies to the time scales explored in the experiment. The good agreement of the data
with the analytical formula confirms the preparation and readout of the desired state.

In addition, we probed the states and their evolution by means of MQC measurements,
which reveal information about multi-spin correlations. Again, good conformity of the
experimental results with the theoretical model was observed. We further optimized the end-
selection scheme by a detailed analysis of the F19 NMR lineshapes obtained from collective
thermal magnetization and the end-polarized state, respectively.

Although we cannot achieve universal control of the end-chain spins and do not detect
the polarization reaching the end of the chain, the initialization and readout capabilities
demonstrated in this work will allow us to experimentally characterize quantum transport in
spin chains. It will enable us, for example, to explore non-idealities that emerge, e.g., at longer
times from non-NN couplings as well as couplings to other chains, and from the interaction of
the chains with the environment. Additionally, these methods will allow further experimental
studies of control schemes that can enable perfect fidelity transfer.
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Appendix A. Analytical solution for the evolution under the double quantum Hamiltonian

Information transport in linear spin chains has often been studied in the literature as arising from
the evolution under the isotropic XY Hamiltonian, HXY =

∑
j<`

b j`

2 (σ
x
j σ

x
` + σ y

j σ
y
` ). For mixed-

state chains, we showed that the DQ Hamiltonian (equation (1)) can as well drive the transport,
since it is connected to the XY Hamiltonian by a similarity transformation. We can thus simulate
quantum transport with a Hamiltonian that (unlike the XY Hamiltonian) can be implemented
experimentally using dipolar Hamiltonian and collective radio-frequency (RF) pulses using a
standard sequence [36, 47].

The evolution of the 1D spin system under a DQ Hamiltonian is exactly solvable in the
NN limit (only NN couplings are present and all are equal to b), by invoking a Jordan–Wigner
mapping onto a system of free fermions [27, 36, 42, 47]. Various formulae describing different
initial states and observables have been reported [20, 29, 34], and we reproduce here the
formulae we used to interpret our experimental results in the main text.

The analytical solutions for the evolution of the thermal state and end-polarized state, when
measuring the collective magnetization, are given by

Sth(t)=

N∑
p=1

Ap,p(2t), (A.1)

Sse(t)=

N∑
p=1

A2
1,p(t), (A.2)

with

A j,q(t)=

∞∑
m=0

i2mν[i δ J2mν+δ(2bt)−iσ J2mν+σ (2bt)] +
∞∑

m=1

i2mν[i−δ J2mν−δ(2bt)−i−σ J2mν−σ (2bt)],

where ν = N + 1, δ = q − j, σ = q + j and Jn are the nth order Bessel functions of the first
kind. Sth(t) is the collective magnetization measured after DQ evolution starting from the
thermal initial state and Sse(t) is the collective magnetization measured after DQ evolution
starting from the end-polarized initial state. We note that the collective magnetization (thermal
state) evolution would give the same signal when one measures the end-polarized state, so that
Sse(t)= Sre(t)≡ Send(t).

Transport from one end of the chain to the other is described by

Ssre(t)= A2
1,1(t)+ A2

1,N (t), (A.3)

which corresponds to the experimental situation where we prepared the end-polarized state
and measured the chain ends only. Finally, we can derive the expected signal arising from the
collective magnetization when the initial state is the logical state δρyL:

SyL(t)= A1,2(2t)+ AN−1,N (2t). (A.4)
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Appendix B. Multiple quantum nuclear magnetic resonance spectroscopy

Multiple quantum spectroscopy is a powerful technique in NMR. It has the ability to simplify
complex spectra by revealing some of the forbidden transitions. Additionally, the creation and
evolution of quantum coherences can be used to probe the dynamics of a correlated many-spin
system giving insight into dimensionality of the spin system, distribution of coupling constants
and effects of motions and quantum transport [36, 51–56].

A density matrix describing the spin system may be expressed as ρ(t)=
∑

n ρn(t), where
ρn(t) is the contribution to ρ(t) from MQC of order n. The intensities of MQC are given by
In(t)= Tr[ρn(t)ρ−n(t)] and can be obtained by performing the experimental scheme described
below.

MQC are first excited by driving the spin system by irradiation with cycles of multiple
pulse sequences consisting of RF pulses and delays. For example, the so-called DQ Hamiltonian
(equation (1)) creates even quantum coherences from the longitudinal magnetization. This
Hamiltonian can be created using a standard eight-pulse sequence [47] or a symmetrized
16-pulse sequence [36]: The primitive pulse cycle is given by P4 =

δt
2 –π2 |x –δt ′ – π

2 |x– δt2 , where
dt ′

= 2dt +w, dt is the delay between pulses and w is the width of the π/2 pulse. To first-
order average Hamiltonian, this sequence simulates the DQ Hamiltonian, while the eight-pulse
sequence, P8 = P4 · P4 · P4 · P4, where P4 is the time-reversed version of P4, gives HDQ to
second order and the 16-pulse sequence, P8 · P8, compensates for pulse errors.

Since standard NMR techniques measure only single-quantum coherences, in order to
probe the MQC dynamics it is necessary to indirectly encode their signature into single-quantum
coherences, which can be directly measured inductively. This is done by labeling each coherence
order with a different phase If ρi is the initial density matrix, the final density matrix ρf is
given by

ρf = U †
MQUφUMQρiU

†
MQU †

φUMQ,

where UMQ = exp(−iHDQt), and Uφ = exp(−iφσz/2) is a rotation about the z-axis by an
angle φ. Under this rotation, a coherence term of order n will acquire a phase nφ. The readout
is performed by using an appropriate sequence in order to measure ρi. In order to extract
the information about the distribution of MQC, each measurement must be repeated while
incrementing φ from 0 to 2π in steps of δφ = 2π/2K , where K is the highest order of MQC we
wish to encode. Finally, Fourier transform of the signal with respect to φ yields the coherence
order intensity:

In(t)=

K∑
k=1

Sk
i (t) e−iknδφ, (B.1)

where Sk
i (t)= Tr {ρk

f (t)ρi} is the signal acquired in the kth measurement. Often it is not possible
or convenient to measure ρi and only another observable ρobs is accessible (e.g. a π /2 pulse
can be used to read out the collective magnetization σz at the end of the experiment). In this
case, starting from an initial state ρi, the signal Sk

obs = Tr {ρk
f (t)ρobs} yields the coherence order

intensity

I ′

n(t)=

K∑
k=1

Sk
obs(t) e−iknδφ

= Tr {ρi(t)
nρobs(t)

−n + ρi(t)
−nρobs(t)

n
}, (B.2)

where ρi(t)= UMQρiU
†
MQ and ρobs(t)= UMQρobsU

†
MQ.
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The technique of MQC spectroscopy outlined above is particularly well suited to study
information transport by means of the DQ Hamiltonian, since the coherence intensities show
characteristic signatures of the occurred transport [20].

In a 1D system with NN coupling, only zero- and double-quantum coherence orders are
created by the DQ Hamiltonian [42]. Starting from the thermal initial state, the normalized
intensities (as defined in equation (B.1)) of the zero- and double-quantum coherences predicted
by the analytical model are given by (see equation (61) of [52]):

J th
0 (t)=

1

N

∑
k

cos2[4bt cos(ψk)],

J th
2 (t)=

1

2N

∑
k

sin2[4bt cos(ψk)],

(B.3)

where, as before, N is the number of spins in the chain and ψk = kπ/(N + 1).
For the end-select state, zero- and double-quantum coherence intensities (as defined in

equation (B.2)) are given by the analytical model as follows:

J end
0 (t)=

2

N + 1

∑
k

sin2(ψk) cos2[4bt cos(ψk)],

J end
2 (t)=

1

N + 1

∑
k

sin2(ψk) sin2[4bt cos(ψk)].

(B.4)

In both equations (B.3) and (B.4), the normalization is chosen such that J0 + 2J2 = 1.
In the case when the chain end selection is operated for both initialization and readout, the

MQC signal corresponds to equation (B.1) and the normalized zero and DQ intensities are given
by [20]

J sre
0 (t)=

4

(N + 1)2
∑
k,h

sin2(k) sin2(h) cos2(ψk +ψh)(1 + cos[Nk + k] cos[Nh + h]),

J sre
2 (t)=

2

(N + 1)2
∑
k,h

sin2(k) sin2(h) sin2(ψk +ψh)(1 + cos[Nk + k] cos[Nh + h]),

(B.5)

where the superscript ‘sre’ refers to select and read ends.
Finally, for the logical state δρyL, the MQC intensities are as follows:

J yL
0 (t)=

2

N + 1

N∑
k=1

sin(ψk) sin(2ψk) sin (8bt cosψk) ,

J yL
2 (t)=

−1

N + 1

N∑
k=1

sin(ψk) sin(2ψk) sin (8bt cosψk) .

(B.6)
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