4 research outputs found

    Clinical and laboratory characteristics of Brazilian versus non-Brazilian primary antiphospholipid syndrome patients in AntiPhospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking (APS ACTION) clinical database and repository

    Full text link
    Abstract Background Antiphospholipid syndrome (APS) is characterized by episodes of thrombosis, obstetric morbidity or both, associated with persistently positive antiphospholipid antibodies (aPL). Studying the profile of a rare disease in an admixed population is important as it can provide new insights for understanding an autoimmune disease. In this sense of miscegenation, Brazil is characterized by one of the most heterogeneous populations in the world, which is the result of five centuries of interethnic crosses of people from three continents. The objective of this study was to compare the clinical and laboratory characteristics of Brazilian vs. non-Brazilian primary antiphospholipid syndrome (PAPS) patients. Methods We classified PAPS patients into 2 groups: Brazilian PAPS patients (BPAPS) and PAPS patients from other countries (non-BPAPS). They were compared regarding demographic characteristics, criteria and non-criteria APS manifestations, antiphospholipid antibody (aPL) profile, and the adjusted Global Antiphospholipid Syndrome Score (aGAPSS). Results We included 415 PAPS patients (88 [21%] BPAPS and 327 [79%] non-BPAPS). Brazilian patients were significantly younger, more frequently female, sedentary, obese, non-white, and had a higher frequency of livedo (25% vs. 10%, p < 0.001), cognitive dysfunction (21% vs. 8%, p = 0.001) and seizures (16% vs. 7%, p = 0.007), and a lower frequency of thrombocytopenia (9% vs. 18%, p = 0.037). Additionally, they were more frequently positive for lupus anticoagulant (87.5% vs. 74.6%, p = 0.01), and less frequently positive to anticardiolipin (46.6% vs. 73.7%, p < 0.001) and anti-ß2-glycoprotein-I (13.6% vs. 62.7%, p < 0.001) antibodies. Triple aPL positivity was also less frequent (8% vs. 41.6%, p < 0.001) in Brazilian patients. Median aGAPSS was lower in the Brazilian group (8 vs. 10, p < 0.0001). In the multivariate analysis, BPAPS patients still presented more frequently with livedo, cognitive dysfunction and sedentary lifestyle, and less frequently with thrombocytopenia and triple positivity to aPL. They were also less often white. Conclusions Our study suggests a specific profile of PAPS in Brazil with higher frequency of selected non-criteria manifestations and lupus anticoagulant positivity. Lupus anticoagulant (not triple positivity) was the major aPL predictor of a classification criteria event.http://deepblue.lib.umich.edu/bitstream/2027.42/174072/1/42358_2021_Article_222.pd

    The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3

    Get PDF
    Abstract The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of  ℒ = 2 × 1034 cm-2 s-1 was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of  ℒ = 2 × 1034 cm-2 s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector.</jats:p
    corecore