21 research outputs found

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF

    The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: a systematic review

    No full text
    International audienceBackground: Amyotrophic lateral sclerosis (ALS) is a fatal, rapidly progressive neurodegenerative disease that mainly affects the motor system. A number of potentially neuroprotective and neurorestorative disease-modifying drugs are currently in clinical development. At present, the evaluation of a drug's clinical efficacy in ALS is based on the ALS Functional Rating Scale Revised, motor tests and survival. However, these endpoints are general, variable and late-stage measures of the ALS disease process and thus require the long-term assessment of large cohorts. Hence, there is a need for more sensitive radiological biomarkers. Various sequences for magnetic resonance imaging (MRI) of the brain and spinal cord have may have value as surrogate biomarkers for use in future clinical trials. Here, we review the MRI findings in ALS, their clinical correlations, and their limitations and potential role as biomarkers.Methods: The PubMed database was screened to identify studies using MRI in ALS. We included general MRI studies with a control group and an ALS group and longitudinal studies even if a control group was lacking.Results: A total of 116 studies were analysed with MRI data and clinical correlations. The most disease-sensitive MRI patterns are in motor regions but the brain is more broadly affected.Conclusion: Despite the existing MRI biomarkers, there is a need for large cohorts with long term MRI and clinical follow-up. MRI assessment could be improved by standardized MRI protocols with multicentre studies

    大豆新選拔品系在不同栽培年度、季節、地區之農藝性狀與其產量、蛋白質及油份含量的變異

    Get PDF
    International audienceProstate cancer is the second leading cause of male cancer death in developed countries. Although the role of angiogenesis in its progression is well established, the efficacy of anti-angiogenic therapy is not clearly proved. Whether this could depend on differential responses between tumor and normal endothelial cells has not been tested. We isolated and characterized three lines of endothelial cells from prostate cancer and we tested the effect of Sunitinib and Sorafenib, and the combined treatment with the anti-androgen Casodex, on their angiogenic functions. Endothelial cells isolated from prostate tumors showed angiogenic properties and expression of androgen and vascular endothelial cell growth factor receptors. Sunitinib affected their proliferation, survival and motility while Sorafenib only showed a minor effect. At variance, Sunitinib and Sorafenib showed similar cytotoxic and anti-angiogenic effects on normal endothelial cells. Sorafenib and Sunitinib inhibited vascular endothelial cell growth factor receptor2 phosphorylation of prostate cancer endothelial cells, while they differentially modulated Akt phosphorylation as no inhibitory effect of Sorafenib was observed on Akt activation. The combined treatment of Casodex reverted the observed resistance to Sorafenib both on cell viability and on Akt activation, whereas it did not modify the response to Sunitinib. Our study demonstrates a resistant behavior of endothelial cells isolated from prostate cancer to Sorafenib, but not Sunitinib. Moreover, it shows the benefit of a multi-target therapy combining anti-angiogenic and anti-hormonal drugs to overcome resistance

    Encapsulation of a TRPM8 Agonist, WS12, in Lipid Nanocapsules Potentiates PC3 Prostate Cancer Cell Migration Inhibition through Channel Activation

    No full text
    International audienceIn prostate carcinogenesis, expression and/or activation of the Transient Receptor Potential Melastatin 8 channel (TRPM8) was shown to block in vitro Prostate Cancer (PCa) cell migration. Because of their localization at the plasma membrane, ion channels, such as TRPM8 and other membrane receptors, are promising pharmacological targets. The aim of this study was thus to use nanocarriers encapsulating a TRPM8 agonist to efficiently activate the channel and therefore arrest PCa cell migration. To achieve this goal, the most efficient TRPM8 agonist, WS12, was encapsulated into Lipid NanoCapsules (LNC). The effect of the nanocarriers on channel activity and cellular physiological processes, such as cell viability and migration, were evaluated in vitro and in vivo. These results provide a proof-of-concept support for using TRPM8 channel-targeting nanotechnologies based on LNC to develop more effective methods inhibiting PCa cell migration in zebrafish xenograft

    MRI of the cervical spinal cord predicts respiratory dysfunction in ALS

    No full text
    Abstract For patients with amyotrophic lateral sclerosis (ALS), the primary therapeutic goal is to minimize morbidity. Non-invasive ventilation improves survival. We aim to assess whether Magnetic Resonance Imaging (MRI) of the cervical spinal cord predicts the progression of respiratory disorders in ALS. Brain and spinal MRI was repeatedly performed in the SOD1G86R mouse model, in 40 patients and in healthy controls. Atrophy, iron overload, white matter diffusivity and neuronal loss were assessed. In Superoxide Dismutase-1 (SOD1) mice, iron accumulation appeared in the cervical spinal cord at symptom onset but disappeared with disease progression (after the onset of atrophy). In ALS patients, the volumes of the motor cortex and the medulla oblongata were already abnormally low at the time of diagnosis. Baseline diffusivity in the internal capsule was predictive of functional handicap. The decrease in cervical spinal cord volume from diagnosis to 3 months was predictive of the change in slow vital capacity at 12 months. MRI revealed marked abnormalities at the time of ALS diagnosis. Early atrophy of the cervical spinal cord may predict the progression of respiratory disorders, and so may be of value in patient care and as a primary endpoint in pilot neuroprotection studies
    corecore