405 research outputs found

    Irreversible flow of vortex matter: polycrystal and amorphous phases

    Get PDF
    We investigate the microscopic mechanisms giving rise to plastic depinning and irreversible flow in vortex matter. The topology of the vortex array crucially determines the flow response of this system. To illustrate this claim, two limiting cases are considered: weak and strong pinning interactions. In the first case disorder is strong enough to introduce plastic effects in the vortex lattice. Diffraction patterns unveil polycrystalline lattice topology with dislocations and grain boundaries determining the electromagnetic response of the system. Filamentary flow is found to arise as a consequence of dislocation dynamics. We analize the stability of vortex lattices against the formation of grain boundaries, as well as the steady state dynamics for currents approaching the depinning critical current from above, when vortex motion is mainly localized at the grain boundaries. On the contrary, a dislocation description proves no longer adequate in the second limiting case examined. For strong pinning interactions, the vortex array appears completely amorphous and no remnant of the Abrikosov lattice order is left. Here we obtain the critical current as a function of impurity density, its scaling properties, and characterize the steady state dynamics above depinning. The plastic depinning observed in the amorphous phase is tightly connected with the emergence of channel-like flow. Our results suggest the possibility of establishing a clear distinction between two topologically disordered vortex phases: the vortex polycrystal and the amorphous vortex matter.Comment: 13 pages, 16 figure

    Ionospheric effects during first 2 hours after the Chelyabinsk meteorite impact

    Full text link
    This paper presents the analysis of ionospheric effects in the region close to the Chelyabinsk meteorite explosion at 03:20UT 2013 February 15 from the Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS) EKB radar data, and from the Institute of Geophysics of Ural Branch of Russian Academy of Sciences (IG UB RAS) PARUS ionosonde data. Both instruments are located within the IG UB RAS Arti Observatory approximately 200 km northward from the estimated explosion site. According to the data obtained, the ionospheric disturbance caused by the meteorite flyby, explosion, and impact had high dynamics and amplitude. However, it obviously did not lead to a variation in the ionosphere mean parameters in the region above the disturbance center during the first 2 hours. Essential effects, however, were observed at more than 100-200 km from the explosion site and farther up to 1500 km.Comment: 30 pages, 15 figures, submitted to JAST

    Developing willingness of education community to use ICT facilities

    Full text link
    The willingness of education community to apply ICT facilities is composed of understanding the specific of devices and skills to exploit them fluently as well as ideas about the most efficient and effective way for training during classesГотовность участников образовательного процесса к задействованию средств ИКТ складывается из понимания особенностей их устройства и навыков свободной эксплуатации, а также из представлений о наиболее рациональном и эффективном для обучения методе их использования в ходе заняти

    Precise and ultrafast molecular sieving through graphene oxide membranes

    Full text link
    There has been intense interest in filtration and separation properties of graphene-based materials that can have well-defined nanometer pores and exhibit low frictional water flow inside them. Here we investigate molecular permeation through graphene oxide laminates. They are vacuum-tight in the dry state but, if immersed in water, act as molecular sieves blocking all solutes with hydrated radii larger than 4.5A. Smaller ions permeate through the membranes with little impedance, many orders of magnitude faster than the diffusion mechanism can account for. We explain this behavior by a network of nanocapillaries that open up in the hydrated state and accept only species that fit in. The ultrafast separation of small salts is attributed to an 'ion sponge' effect that results in highly concentrated salt solutions inside graphene capillaries

    Multimedia technology in university for foreign language teaching

    Full text link
    Multimedia technology is vital and essential for foreign language teaching. It helps to have absolutely innovative, new and interesting lessons at the university. It is obvious, that teaching approaches are more effective and diverse nowadaysМультимедийные технологии являются необходимым средством при изучении иностранных языков. Современное обучение немыслимо без электронных ресурсов и современных технологий. Обучение становится эффективным и разнообразны

    Depinning and critical current characteristics of topologically defected vortex lattices

    Get PDF
    We discuss the role of dislocation assemblies such as grain boundaries in the dynamic response of a driven vortex lattice. We simulate the depinning of a field-cooled vortex polycrystal and observe a general enhancement of the critical current as well as a distinct crossover in the characterisitic of this quantity as a function of pinning density. The results agree with analytical predictions for grain boundary depinning. The dynamics of grain boundaries thus proves an essential mechanism underlying the flow response of defected vortex lattices and the corresponding transport properties of the superconducting material. We emphasize the connection between the topological rearrangements of the lattice and its threshold dynamics. Our theory encompasses a variety of experimental observations in vortex matter as well as in colloidal crystals.Comment: 7 Figure

    Instabilities in the Flux Line Lattice of Anisotropic Superconductors

    Full text link
    The stability of the flux line lattice has been investigated within anisotropic London theory. This is the first full-scale investigation of instabilities in the `chain' state. It has been found that the lattice is stable at large fields, but that instabilities occur as the field is reduced. The field at which these instabilities first arise, b(ϵ,θ)b^*(\epsilon,\theta), depends on the anisotropy ϵ\epsilon and the angle θ\theta at which the lattice is tilted away from the cc-axis. These instabilities initially occur at wavevector k(ϵ,θ)k^*(\epsilon,\theta), and the component of kk^* along the average direction of the flux lines, kzk_z, is always finite. As the instability occurs at finite kzk_z the dependence of the cutoff on kzk_z is important, and we have used a cutoff suggested by Sudb\ospace and Brandt. The instabilities only occur for values of the anisotropy ϵ\epsilon appropriate to a material like BSCCO, and not for anisotropies more appropriate to YBCO. The lower critical field Hc1(ϕ)H_{c_1}(\phi) is calculated as a function of the angle ϕ\phi at which the applied field is tilted away from the crystal axis. The presence of kinks in Hc1(ϕ)H_{c_1}(\phi) is seen to be related to instabilities in the equilibrium flux line structure.Comment: Extensively revised paper, with modified analysis of elastic instabilities. Calculation of the lower critical field is included, and the presence of kinks in Hc1H_{c_1} is seen to be related to the elastic instabilities. 29 pages including 16 figures, LaTeX with epsf styl
    corecore