44 research outputs found

    Lectin-mediated bacterial modulation by the intestinal nematode Ascaris suum

    Get PDF
    Ascariasis is a global health problem for humans and animals. Adult Ascaris nematodes are long-lived in the host intestine where they interact with host cells as well as members of the microbiota resulting in chronic infections. Nematode interactions with host cells and the microbial environment are prominently mediated by parasite-secreted proteins and peptides possessing immunomodulatory and antimicrobial activities. Previously, we discovered the C-type lectin protein AsCTL-42 in the secreted products of adult Ascaris worms. Here we tested recombinant AsCTL-42 for its ability to interact with bacterial and host cells. We found that AsCTL-42 lacks bactericidal activity but neutralized bacterial cells without killing them. Treatment of bacterial cells with AsCTL-42 reduced invasion of intestinal epithelial cells by Salmonella. Furthermore, AsCTL-42 interacted with host myeloid C-type lectin receptors. Thus, AsCTL-42 is a parasite protein involved in the triad relationship between Ascaris, host cells, and the microbiota

    A platform for glycoengineering a polyvalent pneumococcal bioconjugate vaccine using E. coli as a host

    Get PDF
    Chemical synthesis of conjugate vaccines, consisting of a polysaccharide linked to a protein, can be technically challenging, and in vivo bacterial conjugations (bioconjugations) have emerged as manufacturing alternatives. Bioconjugation relies upon an oligosaccharyltransferase to attach polysaccharides to proteins, but currently employed enzymes are not suitable for the generation of conjugate vaccines when the polysaccharides contain glucose at the reducing end, which is the case for ~75% of Streptococcus pneumoniae capsules. Here, we use an O-linking oligosaccharyltransferase to generate a polyvalent pneumococcal bioconjugate vaccine with polysaccharides containing glucose at their reducing end. In addition, we show that different vaccine carrier proteins can be glycosylated using this system. Pneumococcal bioconjugates are immunogenic, protective and rapidly produced within E. coli using recombinant techniques. These proof-of-principle experiments establish a platform to overcome limitations of other conjugating enzymes enabling the development of bioconjugate vaccines for many important human and animal pathogens

    A single amino acid polymorphism in the glycosyltransferase CpsK defines four Streptococcus suis serotypes

    No full text
    The capsular polysaccharide (CPS) is the major virulence factor of the emerging zoonotic pathogen Streptococcus suis. CPS differences are also the basis for serological differentiation of the species into 29 serotypes. Serotypes 2 and 1/2, which possess identical gene content in their cps loci, express CPSs that differ only by substitution of galactose (Gal) by N-acetylgalactosamine (GalNAc) in the CPS side chain. The same sugar substitution differentiates the CPS of serotypes 14 and 1, whose cps loci are also identical in gene content. Here, using mutagenesis, CPS structural analysis, and protein structure modeling, we report that a single amino acid polymorphism in the glycosyltransferase CpsK defines the enzyme substrate predilection for Gal or GalNAc and therefore determines CPS composition, structure, and strain serotype. We also show that the different CPS structures have similar antiphagocytic properties and that serotype switching has limited impact on the virulence of S. suis.Peer Reviewe
    corecore