25 research outputs found

    Identification and Classification of Conserved RNA Secondary Structures in the Human Genome

    Get PDF
    The discoveries of microRNAs and riboswitches, among others, have shown functional RNAs to be biologically more important and genomically more prevalent than previously anticipated. We have developed a general comparative genomics method based on phylogenetic stochastic context-free grammars for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set of 48,479 candidate RNA structures. This screen finds a large number of known functional RNAs, including 195 miRNAs, 62 histone 3′UTR stem loops, and various types of known genetic recoding elements. Among the highest-scoring new predictions are 169 new miRNA candidates, as well as new candidate selenocysteine insertion sites, RNA editing hairpins, RNAs involved in transcript auto regulation, and many folds that form singletons or small functional RNA families of completely unknown function. While the rate of false positives in the overall set is difficult to estimate and is likely to be substantial, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization

    Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges

    Get PDF
    Pathway analysis has become the first choice for gaining insight into the underlying biology of differentially expressed genes and proteins, as it reduces complexity and has increased explanatory power. We discuss the evolution of knowledge base–driven pathway analysis over its first decade, distinctly divided into three generations. We also discuss the limitations that are specific to each generation, and how they are addressed by successive generations of methods. We identify a number of annotation challenges that must be addressed to enable development of the next generation of pathway analysis methods. Furthermore, we identify a number of methodological challenges that the next generation of methods must tackle to take advantage of the technological advances in genomics and proteomics in order to improve specificity, sensitivity, and relevance of pathway analysis

    Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life

    Full text link

    Host response mechanisms in periodontal diseases

    Full text link

    HIV Research with Men who Have Sex with Men (MSM): Advantages and Challenges of Different Methods for Most Appropriately Targeting a Key Population

    No full text
    corecore