346 research outputs found
Quercetin Reduces Lipid Accumulation in a Cell Model of NAFLD by Inhibiting De Novo Fatty Acid Synthesis through the AcetylâCoA Carboxylase 1/AMPK/PP2A Axis
none6noDysregulation of de novo lipogenesis (DNL) has recently gained strong attention as being one of the critical factors that contribute to the assessment of nonâalcoholic fatty liver disease (NAFLD). NAFLD is often diagnosed in patients with dyslipidemias and type 2 diabetes; thus, an interesting correlation can be deduced between high hematic free fatty acids and glucose excess in the DNL dysregulation. In the present study, we report that, in a cellular model of NAFLD, the coexistence of elevated glucose and FFA conditions caused the highest cellular lipid accumulation. Deepening the molecular mechanisms of the DNL dysregulationâRTâqPCR and immunoblot analysis demonstrated increased expression of mitochondrial citrate carrier (CiC), cytosolic acetylâ CoA carboxylase 1 (ACACA), and diacylglycerol acyltransferase 2 (DGAT2) involved in fatty acids and triglycerides synthesis, respectively. XBPâ1, an endoplasmic reticulum stress marker, and SREBPâ1 were the transcription factors connected to the DNL activation. Quercetin (Que), a flavonoid with strong antioxidant properties, and noticeably reduced the lipid accumulation and the expression of SREBPâ1 and XBPâ1, as well as of their lipogenic gene targets in steatotic cells. The antiâlipogenic action of Que mainly occurs through a strong phosphorylation of ACACA, which catalyzes the committing step in the DNL pathway. The high level of ACACA phosphorylation in Queâtreated cells was explained by the intervention of AMPK together with the reduction of enzymatic activity of PP2A phosphatase. Overall, our findings highlight a direct antiâlipogenic effect of Que exerted through inhibition of the DNL pathway by acting on ACACA/AMPK/PP2A axis; thus, suggesting this flavonoid as a promising molecule for the NAFLD treatment.openGnoni A.; Di Chiara Stanca B.; Giannotti L.; Gnoni G.V.; Siculella L.; Damiano F.Gnoni, A.; Di Chiara Stanca, B.; Giannotti, L.; Gnoni, G. V.; Siculella, L.; Damiano, F
Is digital twin technology supporting safety management? A bibliometric and systematic review
In the Industry 4.0 era, digital tools applied to production and manufacturing activities represent a challenge for companies. Digital Twin (DT) technology is based on the integration of different âtraditionalâ tools, such as simulation modeling and sensors, and is aimed at increasing process performance. In DTs, simulation modeling allows for the building of a digital copy of real processes, which is dynamically updated through data derived from smart objects based on sensor technologies. The use of DT within manufacturing activities is constantly increasing, as DTs are being applied in different areas, from the design phase to the operational ones. This study aims to analyze existing fields of applications of DTs for supporting safety management processes in order to evaluate the current state of the art. A bibliometric review was carried out through VOSviewer to evaluate studies and applications of DTs in the engineering and computer science areas and to identify research clusters and future trends. Next, a bibliometric and systematic review was carried out to deepen the relation between the DT approach and safety issues. The findings highlight that in recent years, DT applications have been tested and developed to support operators during normal and emergency conditions and to enhance their abilities to control safety levels
Role of BRAF in Hepatocellular Carcinoma: A Rationale for Future Targeted Cancer Therapies
The few therapeutic strategies for advance hepatocellular carcinoma (HCC) on poor knowledge of its biology. For several years, sorafenib, a tyrosine kinase inhibitors (TKI) inhibitor, has been the approved treatment option, to date, for advanced HCC patients. Its activity is the inhibition of the retrovirus-associated DNA sequences protein (RAS)/Rapidly Accelerated Fibrosarcoma protein (RAF)/mitogen-activated and extracellular-signal regulated kinase (MEK)/extracellular-signal regulated kinases (ERK) signaling pathway. However, the efficacy of sorafenib is limited by the development of drug resistance, and the major neuronal isoform of RAF, BRAF and MEK pathways play a critical and central role in HCC escape from TKIs activity. Advanced HCC patients with a BRAF mutation display a multifocal and/or more aggressive behavior with resistance to TKI. Moreover, also long non-coding RNA (lnc-RNA) have been studied in epigenetic studies for BRAF aggressiveness in HCC. So far, lnc-RNA of BRAF could be another mechanism of cancer proliferation and TKI escape in HCC and the inhibition could become a possible strategy treatment for HCC. Moreover, recent preclinical studies and clinical trials evidence that combined treatments, involving alternative pathways, have an important role of therapy for HCC and they could bypass resistance to the following TKIs: MEK, ERKs/ribosomal protein S6 kinase 2 (RSK2), and phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). These initial data must be confirmed in clinical studies, which are currently ongoing. Translational research discoveries could create new strategies of targeted therapy combinations, including BRAF pathway, and they could eventually bring light in new treatment of HCC
Pharmacokinetic and metabolism determinants of fluoropyrimidines and oxaliplatin activity in treatment of colorectal patients
Fluoropyrimidines and oxaliplatin continued to be the mainstay of therapeutic regimens in the treatment of colorectal cancer (CRC). For this reason, pharmacokinetic and metabolism of these drugs were analyzed and the identification of accurate and validated predictive, prognostic and toxicity markers became necessary to develop an effective therapy adapted to the patient's molecular profile, while minimizing life-threatening toxicities. In this review, we discuss literature data, defining predictive and prognostic markers actually identified in the treatment of CRC. We analyzed predictive markers of fluoropyrimidines effectiveness, principally for 5-Fluorouracil (5-FU) and also for oral fluoropyrimidines, as thymidylate Synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyl transferase (OPRT), methylenetetrahydrofolate reductase (MTHFR), deoxyuridine triphosphate nucleotidohydrolase (dUTPase), micro-satellite instability. DPD represent the more studied 5-FU toxicity marker, followed by TS and OPRT. Oxaliplatin effectiveness is principally regulated by nucleotide excision repair (NER) pathway, including excision repair cross-complementation group 1 (ERCC1), X-ray cross-complementing group 1 (XRCC1) and xeroderma pigmentosum group D (XDP). The major oxaliplatin toxicity marker is represented by glutathione S-transferase (GST). All these results are based principally on retrospective studies. The future challenge became to validate molecular markers and their association with clinical outcomes in prospective trials, refining technologic platforms and bioin-formatics to accommodate the complexity of the multifaceted molecular map that may determine outcome, and determining CRC patients most likely to benefit from therapeutic interventions tailored specifically for them
Immunotherapeutic approaches for hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is a cancer with a high mortality rate due to the fact that the diagnosis usually occurs at anadvanced stage. Even in case of curative surgical treatment, recurrence is common. Sorafenib and regorafenib are the only therapeutic agents that have been demonstrated to be effective in advanced HCC, thus novel curative approaches are urgently needed. Recent studies focus on the role of immune system in HCC. In fact, the unique immune response in the liver favors tolerance, which can represent a real challenge for conventional immunotherapy in these patients. Spontaneous immune responses against tumor antigens have been detected, and new immune therapies are under investigation: dendritic cell vaccination, immune-modulator strategy, and immune checkpoint inhibition. In recent years different clinical trials examining the use of immunotherapy to treat HCC have been conducted with initial promising results. This review article will summarize the literature data concerning the potential immunotherapeutic approaches in HCC patient
Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases.
In mammals, complex I (NADH-ubiquinone oxidoreductase) of the mitochondrial respiratory chain has 31 supernumerary subunits in addition to the 14 conserved from prokaryotes to humans. Multiplicity of structural protein components, as well as of biogenesis factors, makes complex I a sensible pace-maker of mitochondrial respiration. The work reviewed here shows that the cAMP/PKA pathway regulates the biogenesis, assembly and catalytic activity of complex I and mitochondrial oxygen superoxide production. The structural, functional and regulatory complexity of complex I, renders it particularly vulnerable to genetic and sporadic pathological factors. Complex I dysfunction has, indeed, been found, to be associated with several human diseases. Knowledge of the pathogenetic mechanisms of these diseases can help to develop new therapeutic strategies. (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved
Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases
In mammals, complex I (NADH-ubiquinone oxidoreductase) of the mitochondrial respiratory chain has 31 supernumerary subunits in addition to the 14 conserved from prokaryotes to humans. Multiplicity of structural protein components, as well as of biogenesis factors, makes complex I a sensible pace-maker of mitochondrial respiration. The work reviewed here shows that the cAMP/PKA pathway regulates the biogenesis, assembly and catalytic activity of complex I and mitochondrial oxygen superoxide production. The structural, functional and regulatory complexity of complex I, renders it particularly vulnerable to genetic and sporadic pathological factors. Complex I dysfunction has, indeed, been found, to be associated with several human diseases. Knowledge of the pathogenetic mechanisms of these diseases can help to develop new therapeutic strategies. (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved
Src Dependent Pancreatic Acinar Injury Can Be Initiated Independent of an Increase in Cytosolic Calcium
Several deleterious intra-acinar phenomena are simultaneously triggered on initiating acute pancreatitis. These culminate in acinar injury or inflammatory mediator generation in vitro and parenchymal damage in vivo. Supraphysiologic caerulein is one such initiator which simultaneously activates numerous signaling pathways including non-receptor tyrosine kinases such as of the Src family. It also causes a sustained increase in cytosolic calcium- a player thought to be crucial in regulating deleterious phenomena. We have shown Src to be involved in caerulein induced actin remodeling, and caerulein induced changes in the Golgi and post-Golgi trafficking to be involved in trypsinogen activation, which initiates acinar cell injury. However, it remains unclear whether an increase in cytosolic calcium is necessary to initiate acinar injury or if injury can be initiated at basal cytosolic calcium levels by an alternate pathway. To study the interplay between tyrosine kinase signaling and calcium, we treated mouse pancreatic acinar cells with the tyrosine phosphatase inhibitor pervanadate. We studied the effect of the clinically used Src inhibitor Dasatinib (BMS-354825) on pervanadate or caerulein induced changes in Src activation, trypsinogen activation, cell injury, upstream cytosolic calcium, actin and Golgi morphology. Pervanadate, like supraphysiologic caerulein, induced Src activation, redistribution of the F-actin from its normal location in the sub-apical area to the basolateral areas, and caused antegrade fragmentation of the Golgi. These changes, like those induced by supraphysiologic caerulein, were associated with trypsinogen activation and acinar injury, all of which were prevented by Dasatinib. Interestingly, however, pervanadate did not cause an increase in cytosolic calcium, and the caerulein induced increase in cytosolic calcium was not affected by Dasatinib. These findings suggest that intra-acinar deleterious phenomena may be initiated independent of an increase in cytosolic calcium. Other players resulting in acinar injury along with the Src family of tyrosine kinases remain to be explored. © 2013 Mishra et al
- âŠ