76 research outputs found
Somatic drivers of B-ALL in a model of ETV6-RUNX1; Pax5(+/-) leukemia.
BACKGROUND: B-cell precursor acute lymphoblastic leukemia (B-ALL) is amongst the leading causes of childhood cancer-related mortality. Its most common chromosomal aberration is the ETV6-RUNX1 fusion gene, with ~25% of ETV6-RUNX1 patients also carrying PAX5 alterations. METHODS: We have recreated this mutation background by inter-crossing Etv6-RUNX1 (Etv6 (RUNX1-SB)) and Pax5(+/-) mice and performed an in vivo analysis to find driver genes using Sleeping Beauty transposon-mediated mutagenesis and also exome sequencing. RESULTS: Combination of Etv6-RUNX1 and Pax5(+/-) alleles generated a transplantable B220 + CD19+ B-ALL with a significant disease incidence. RNA-seq analysis showed a gene expression pattern consistent with arrest at the pre-B stage. Analysis of the transposon common insertion sites identified genes involved in B-cell development (Zfp423) and the JAK/STAT signaling pathway (Jak1, Stat5 and Il2rb), while exome sequencing revealed somatic hotspot mutations in Jak1 and Jak3 at residues analogous to those mutated in human leukemias, and also mutation of Trp53. CONCLUSIONS: Powerful synergies exists in our model suggesting STAT pathway activation and mutation of Trp53 are potent drivers of B-ALL in the context of Etv6-RUNX1;Pax5(+/-)
The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia.
Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using in vitro and in vivo genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets in vitro across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.Funding in the Huntly laboratory comes from Cancer Research UK, Leukemia
Lymphoma Research, the Kay Kendal Leukemia Fund, the Leukemia lymphoma
Society of America, the Wellcome Trust, The Medical Research Council and an NIHR
Cambridge Biomedical Research Centre grant. Patient samples were processed in the
Cambridge Blood and Stem Cell Biobank.This is the author accepted manuscript. The final version is available via NPG at http://dx.doi.org/10.1038/onc.2015.9
Novel and rare fusion transcripts involving transcription factors and tumor suppressor genes in acute myeloid leukemia
Approximately 18% of acute myeloid leukemia (AML) cases express a fusion transcript. However, few fusions are recurrent across AML and the identification of these rare chimeras is of interest to characterize AML patients. Here, we studied the transcriptome of 8 adult AML patients with poorly described chromosomal translocation(s), with the aim of identifying novel and rare fusion transcripts. We integrated RNA-sequencing data with multiple approaches including computational analysis, Sanger sequencing, fluorescence in situ hybridization and in vitro studies to assess the oncogenic potential of the ZEB2-BCL11B chimera. We detected 7 different fusions with partner genes involving transcription factors (OAZ-MAFK, ZEB2-BCL11B), tumor suppressors (SAV1-GYPB, PUF60-TYW1, CNOT2-WT1) and rearrangements associated with the loss of NF1 (CPD-PXT1, UTP6-CRLF3). Notably, ZEB2-BCL11B rearrangements co-occurred with FLT3 mutations and were associated with a poorly differentiated or mixed phenotype leukemia. Although the fusion alone did not transform murine c-Kit+ bone marrow cells, 45.4% of 14q32 non-rearranged AML cases were also BCL11B-positive, suggesting a more general and complex mechanism of leukemogenesis associated with BCL11B expression. Overall, by combining different approaches, we described rare fusion events contributing to the complexity of AML and we linked the expression of some chimeras to genomic alterations hitting known genes in AML
Loss of Kat2A Enhances Transcriptional Noise and Depletes Acute Myeloid Leukemia Stem-Like Cells
Acute Myeloid Leukemia (AML) is an aggressive hematological malignancy with abnormal progenitor self-renewal and defective myelo-monocytic differentiation. Its pathogenesis comprises subversion of transcriptional regulation, through mutation and by hijacking normal chromatin regulation. Kat2a is a histone acetyltransferase central to promoter activity that we recently associated with stability of pluripotency networks, and identified as a genetic vulnerability in AML. Through combined chromatin profiling and single-cell transcriptomics, we demonstrate that Kat2a contributes to leukemia propagation through homogeneity of transcriptional programs and preservation of leukemia stem-like cells. Kat2a loss reduces transcriptional bursting frequency in a subset of gene promoters, generating enhanced variability of transcript levels but minimal effects on mean gene expression. Destabilization of target programs shifts cellular equilibrium out of self-renewal towards differentiation. We propose that control of transcriptional variability is central to leukemia stem-like cell propagation, and establish a paradigm exploitable in different tumors and at distinct stages of cancer evolution.This work was funded by a Kay Kendall Leukaemia Fund Intermediate Fellowship (KKL888) and by a Leuka John Goldman Fellowship for Future Science (2017) to C.P.. S.P. is funded through a Cambridge-DBT Lectureship; R.K. was funded by an Isaac Newton Trust (INT) Research Grant and a Wellcome Trust ISSF/INT/University of Cambridge Joint Research Grant to C.P.; S.G. is funded by a Lady Tata Memorial Trust PhD Studentship, a Trinity Henry Barlow Trust Scholarship, and the Cambridge Trust; K.Z. received funding from
AIRC (Italian Association for Cancer Research) and is the current recipient of a European Commission Horizon 2020 Marie Sklodowska Curie Post-Doctoral Fellowship
Contrasting requirements during disease evolution identify EZH2 as a therapeutic target in AML
Epigenetic regulators, such as EZH2, are frequently mutated in cancer, and loss-of-function EZH2 mutations are common in
myeloid malignancies. We have examined the importance of cellular context for Ezh2 loss during the evolution of acute myeloid
leukemia (AML), where we observed stage-specific and diametrically opposite functions for Ezh2 at the early and late stages
of disease. During disease maintenance, WT Ezh2 exerts an oncogenic function that may be therapeutically targeted. In
contrast, Ezh2 acts as a tumor suppressor during AML induction. Transcriptional analysis explains this apparent paradox,
demonstrating that loss of Ezh2 derepresses different expression programs during disease induction and maintenance.
During disease induction, Ezh2 loss derepresses a subset of bivalent promoters that resolve toward gene activation, inducing a
feto-oncogenic program that includes genes such as Plag1, whose overexpression phenocopies Ezh2 loss to accelerate AML
induction in mouse models. Our data highlight the importance of cellular context and disease phase for the function of Ezh2
and its potential therapeutic implications.The Huntly laboratory is funded by CRUK (program C18680/ A25508), the European Research Council (grant 647685 COMAL), the Kay Kendall Leukaemia Fund, the Medical Research Council (MRC), Bloodwise, the Wellcome Trust, and the Cambridge National Institute of Health Research Biomedical Research Centre. F. Basheer is a recipient of a Wellcome Trust PhD for Clinicians award. P. Gallipoli is funded by the Wellcome Trust (109967/Z/15/Z). We acknowledge the Wellcome Trust/ MRC center grant (097922/Z/11/Z) and support from Wellcome Trust strategic award 100140. Research in the laboratory is also supported by core funding from the Wellcome Trust and MRC to the Wellcome-MRC Cambridge Stem Cell Institute. This research was supported by the Cambridge National Institute of Health Research Biomedical Research Centre Cell Phenotyping Hub
Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis
Summary
DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression
KAT2A complexes ATAC and SAGA play unique roles in cell maintenance and identity in hematopoiesis and leukemia
Author notes:
*E.F. and S.W. contributed equally to this study.
ChIP-seq and A-seq data have been deposited in GEO (accession numbers GSE128902 and GSE128512).
Send data sharing requests via e-mail to the corresponding author.
The full-text version of this article contains a data supplement.Copyright © 2021 The Authors. Epigenetic histone modifiers are key regulators of cell fate decisions in normal and malignant hematopoiesis. Their enzymatic activities are of particular significance as putative therapeutic targets in leukemia. In contrast, less is known about the contextual role in which those enzymatic activities are exercised, and specifically, how different macromolecular complexes configure the same enzymatic activity with distinct molecular and cellular consequences. We focus on KAT2A, a lysine acetyltransferase responsible for Histone 3 Lysine 9 acetylation, which we recently identified as a dependence in Acute Myeloid Leukemia stem cells, and that participates in 2 distinct macromolecular complexes: Ada Two- A-Containing (ATAC) and Spt-Ada-Gcn5-Acetyltransferase (SAGA). Through analysis of human cord blood hematopoietic stem cells and progenitors, and of myeloid leukemia cells, we identify unique respective contributions of the ATAC complex to regulation of biosynthetic activity in undifferentiated self-renewing cells, and of the SAGA complex to stabilisation or correct progression of cell type-specific programs with putative preservation of cell identity. Cell type and stage-specific dependencies on ATAC and SAGA-regulated programs explain multi-level KAT2A requirements in leukemia and in erythroid lineage specification and development. Importantly, they set a paradigm against which lineage specification and identity can be explored across developmental stem cell systems.Rosetrees Trust PhD Studentship; Kendall Leukaemia Fund Intermediate Fellowship (KKL888); Leuka John Goldman Fellowship for Future Science (2017); Wellcome Trust/University of Cambridge ISSF Grant; Lady Tata Memorial Trust PhD Studentship; Trinity Henry Barlow Trust Studentship; NIH RO1 grant (1R01GM131626-01); Agence Nationale de la Recherche (ANR) Program grants (AAPG2019 PICen, PRCI AAPG2019 EpiCAST, ANR-10-LABX-0030-INRT, frame program Investissements d’Avenir ANR-10IDEX-0002-02); Brunel University
Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death
Acknowledgements We wish to thank the Barts Cancer Institute tissue bank for sample collection and processing. This research was supported by the BCI Flow cytometry facility (CRUK Core Award C16420/A18066). This work was supported by the Wellcome Trust (PG, 109967/Z/15/Z), the American Society of Haematology (PG, Global Research Award) and Cancer Research UK (PG, Advanced Clinician Scientist fellowship, C57799/A27964). K.R-P. was supported by the Academy of Medical Sciences (SBF004\1099) J.H.M.P. was supported by a research grant from Science Foundation Ireland (SFI) under Grant Number 16/RC/3948 and co-funded under the European Regional Development Fund and by FutureNeuro industry partners. K.T. was funded by Wellcome Trust (Grant References: RG94424, RG83195, G106133), UKRI Medical Research Council (RG83195) and Leukaemia UK (G108148).Peer reviewedPublisher PD
SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate the potential association between single nucleotide polymorphisms related response to radiotherapy injury, such as genes related to DNA repair or enzymes involved in anti-oxidative activities. The paper aims to identify marker genes able to predict an increased risk of late toxicity studying our group of patients who underwent a Single Shot 3D-CRT PBI (SSPBI) after BCS (breast conserving surgery).</p> <p>Methods</p> <p>A total of 57 breast cancer patients who underwent SSPBI were genotyped for SNPs (single nucleotide polymorphisms) in XRCC1, XRCC3, GST and RAD51 by Pyrosequencing technology. Univariate analysis (ORs and 95% CI) was performed to correlate SNPs with the risk of developing ≥ G2 fibrosis or fat necrosis.</p> <p>Results</p> <p>A higher significant risk of developing ≥ G2 fibrosis or fat necrosis in patients with: polymorphic variant <it>GSTP1 </it>(Ile105Val) (OR = 2.9; 95%CI, 0.88-10.14, <it>p </it>= 0.047).</p> <p>Conclusions</p> <p>The presence of some SNPs involved in DNA repair or response to oxidative stress seem to be able to predict late toxicity.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01316328">NCT01316328</a></p
Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors.
Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies
- …