22 research outputs found

    Importance of Metal-Ion Exchange for the Biological Activity of Coordination Complexes of the Biomimetic Ligand N4Py

    Get PDF
    Metal coordination complexes can display interesting biological activity, as illustrated by the bleomycins (BLMs), a family of natural antibiotics that when coordinated to a redox-active metal ion, show antitumor activity. Yet, which metal ion is required for the activity in cells is still subject to debate. In this study, we described how different metal ions affect the intracellular behavior and activity of the synthetic BLM-mimic N, N-bis(2-pyridylmethyl)- N-bis(2-pyridyl)methylamine (N4Py). Our study shows that a mixture of iron(II), copper(II), and zinc(II) complexes can be generated when N4Py is added to cell cultures but that the metal ion can also be exchanged by other metal ions present in cells. Moreover, the combination of chemical data, together with the performed biological experiments, shows that the active complex causing oxidative damage to cells is the FeII-N4Py complex and not per se the metal complex that was initially added to the cell culture medium. Finally, it is proposed that the high activity observed upon the addition of the free N4Py ligand is the result of a combination of scavenging of biologically relevant metals and oxidative damage caused by the iron(II) complex

    Targeting Nrf2 in healthy and malignant ovarian epithelial cells:Protection versus promotion

    Get PDF
    Risk factors indicate the importance of oxidative stress during ovarian carcinogenesis. To tolerate oxidative stress, cells activate the transcription factor Nrf2 (Nfe2l2), the master regulator of antioxidant and cytoprotective genes. Indeed, for most cancers, hyperactivity of Nrf2 is observed, and siRNA studies assigned Nrf2 as therapeutic target. However, the cancer-protective role of Nrf2 in healthy cells highlights the requirement for an adequate therapeutic window. We engineered artificial transcription factors to assess the role of Nrf2 in healthy (OSE-C2) and malignant ovarian cells (A2780). Successful NRF2 up- and downregulation correlated with decreased, respectively increased, sensitivity toward oxidative stress. Inhibition of NRF2 reduced the colony forming potential to the same extent in wild-type and BRCA1 knockdown A2780 cells. Only in BRCA1 knockdown A2780 cells, the effect of Nrf2 inhibition could be enhanced when combined with PARP inhibitors. Therefore, we propose that this combination therapy of PARP inhibitors and Nrf2 inhibition can further improve treatment efficacy specifically in BRCA1 mutant cancer cells without acquiring the side-effects associated with previously studied Nrf2 inhibition combinations with either chemotherapy or radiation. Our findings stress the dual role of Nrf2 in carcinogenesis, while offering approaches to exploit Nrf2 as a potent therapeutic target in ovarian cancer. (C) 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved

    Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst

    Get PDF
    The enantioselective addition of water to olefins in an aqueous environment is a common transformation in biological systems, but was beyond the ability of synthetic chemists. Here, we present the first examples of a non-enzymatic catalytic enantioselective hydration of enones, for which we used a catalyst that comprises a copper complex, based on an achiral ligand, non-covalently bound to (deoxy)ribonucleic acid, which is the only source of chirality present under the reaction conditions. The chiral β-hydroxy ketone product was obtained in up to 82% enantiomeric excess. Deuterium-labelling studies demonstrated that the reaction is diastereospecific, with only the syn hydration product formed. So far, this diastereospecific and enantioselective reaction had no equivalent in conventional homogeneous catalysis

    Ruthenium catalysed redox transformation of cinnamaldehyde to 3-phenylpropionic acid and methyl ester.

    Get PDF
    3-Phenylpropionic acid (2) is an intermediate for the anti-aids drug Indinavir. The one step conversion of cinnamaldehyde (4) into 2 was attempted using homogeneous ruthenium catalysts. Use of [H2Ru(Ph3P)4] induced mainly decarbonylation of 4 to give styrene. Use of RuCl3/PCy3 gave a mixture of 2 and cinnamic acid (3). Performing the same reaction in methanol, instead of water/dimethoxyethane mixtures afforded methyl 3-phenylpropionate in 70% yield.

    Folic acid conjugates of a bleomycin mimic for selective targeting of folate receptor positive cancer cells

    Get PDF
    A major challenge in the application of cytotoxic anti-cancer drugs is their general lack of selectivity, which often leads to systematic toxicity due to their inability to discriminate between malignant and healthy cells. A particularly promising target for selective targeting are the folate receptors (FR) that are often over-expressed on cancer cells. Here, we report on a conjugate of the pentadentate nitrogen ligand N4Py to folic acid, via a cleavable disulphide linker, which shows selective cytotoxicity against folate receptor expressing cancer cells

    Efficient Nuclear DNA Cleavage in Human Cancer Cells by Synthetic Bleomycin Mimics

    Get PDF
    Iron complexes of N,N-bis(2-Pyridylmethyl)-N-bis(2-pyridyl)-methylamine (N4Py) have proven to be excellent synthetic mimics of the Bleomycins (BLMs), which are a family of natural antibiotics used clinically in the treatment of certain cancers. However, most investigations of DNA cleavage activity of these and related metal complexes were carried out in 0, cell-free systems using plasmid DNA as substrate. The present study evaluated nuclear DNA cleavage activity and cell cytotoxicity of BLM and its synthetic mimics based on the ligand N4Py. The N4Py-based reagents induced nuclear DNA cleavage in living cells as efficiently as BLM and Fe(II)-BLM. Treatment of 2 cancer cell lines and 1 noncancerous cell line indicated improved cytotoxicity of N4Py when compared to BLM. Moreover, some level of selectivity was observed for N4Py on cancerous versus noncancerous cells. It was demonstrated that N4Py-based reagents and BLM induce cell death via different mechanistic pathways. BLM was shown to induce cell cycle arrest, ultimately resulting in mitotic catastrophe. In contrast, N4Py-based reagents were shown to induce apoptosis effectively. To the best of our knowledge, the present study is the first demonstration of efficient nuclear DNA cleavage activity of a synthetic BLM mimic within cells. The results presented here show that it is possible to design synthetic bioinorganic model complexes that are at least as active as the parent natural product and thereby are potentially interesting alternatives for BLM to induce antitumor activity

    Efficient Nuclear DNA Cleavage in Human Cancer Cells by Synthetic Bleomycin Mimics

    No full text
    Iron complexes of <i>N</i>,<i>N</i>-bis­(2-pyridylmethyl)-<i>N</i>-bis­(2-pyridyl)-methylamine (N4Py) have proven to be excellent synthetic mimics of the Bleomycins (BLMs), which are a family of natural antibiotics used clinically in the treatment of certain cancers. However, most investigations of DNA cleavage activity of these and related metal complexes were carried out in cell-free systems using plasmid DNA as substrate. The present study evaluated nuclear DNA cleavage activity and cell cytotoxicity of BLM and its synthetic mimics based on the ligand N4Py. The N4Py-based reagents induced nuclear DNA cleavage in living cells as efficiently as BLM and Fe­(II)-BLM. Treatment of 2 cancer cell lines and 1 noncancerous cell line indicated improved cytotoxicity of N4Py when compared to BLM. Moreover, some level of selectivity was observed for N4Py on cancerous versus noncancerous cells. It was demonstrated that N4Py-based reagents and BLM induce cell death via different mechanistic pathways. BLM was shown to induce cell cycle arrest, ultimately resulting in mitotic catastrophe. In contrast, N4Py-based reagents were shown to induce apoptosis effectively. To the best of our knowledge, the present study is the first demonstration of efficient nuclear DNA cleavage activity of a synthetic BLM mimic within cells. The results presented here show that it is possible to design synthetic bioinorganic model complexes that are at least as active as the parent natural product and thereby are potentially interesting alternatives for BLM to induce antitumor activity

    Importance of Metal-Ion Exchange for the Biological Activity of Coordination Complexes of the Biomimetic Ligand N4Py

    No full text
    Metal coordination complexes can display interesting biological activity, as illustrated by the bleomycins (BLMs), a family of natural antibiotics that when coordinated to a redox-active metal ion, show antitumor activity. Yet, which metal ion is required for the activity in cells is still subject to debate. In this study, we described how different metal ions affect the intracellular behavior and activity of the synthetic BLM-mimic <i>N</i>,<i>N</i>-bis­(2-pyridylmethyl)-<i>N</i>-bis­(2-pyridyl)­methylamine (N4Py). Our study shows that a mixture of iron­(II), copper­(II), and zinc­(II) complexes can be generated when N4Py is added to cell cultures but that the metal ion can also be exchanged by other metal ions present in cells. Moreover, the combination of chemical data, together with the performed biological experiments, shows that the active complex causing oxidative damage to cells is the Fe<sup>II</sup>-N4Py complex and not per se the metal complex that was initially added to the cell culture medium. Finally, it is proposed that the high activity observed upon the addition of the free N4Py ligand is the result of a combination of scavenging of biologically relevant metals and oxidative damage caused by the iron­(II) complex

    Chemogenetic Tags with Probe Exchange for Live-Cell Fluorescence Microscopy

    No full text
    Fluorogenic protein tagging systems have been less developed for prokaryotes than for eukaryotic cell systems. Here, we extend the concept of noncovalent fluorogenic protein tags in bacteria by introducing transcription factor-based tags, namely, LmrR and RamR, for probe binding and fluorescence readout under aerobic and anaerobic conditions. We developed two chemogenetic protein tags that impart fluorogenicity and a longer fluorescence lifetime to reversibly bound organic fluorophores, hence the name Chemogenetic Tags with Probe Exchange (CTPEs). We present an extensive characterization of 30 fluorophores reversibly interacting with the two different CTPEs and conclude that aromatic planar structures bind with high specificity to the hydrophobic pockets of these tags. The reversible binding of organic fluorophores to the CTPEs and the superior photophysical properties of organic fluorophores enable long-term fluorescence microscopy of living bacterial cells. Our protein tags provide a general tool for investigating (sub)cellular protein localization and dynamics, protein-protein interactions, and prolonged live-cell microscopy, even under oxygen-free conditions
    corecore