12 research outputs found

    Electrical conductivity during incipient melting in the oceanic low-velocity zone

    Get PDF
    International audienceThe low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals2, 3, 4 or to a few volume per cent of partial melt5, 6, 7, 8, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases9 (including pargasite amphibole at moderate temperatures10) and partial melting at high temperatures9. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation11, 12. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere10, 13, 14, 15, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates4, where seamount volcanism occurs6, a higher degree of melting is expected

    Persistence of strong silica-enriched domains in the Earth's lower mantle

    Get PDF
    The composition of the lower mantle—comprising 56% of Earth’s volume—remains poorly constrained. Among the major elements, Mg/Si ratios ranging from ∼0.9–1.1, such as in rocky Solar-System building blocks (or chondrites), to ∼1.2–1.3, such as in upper-mantle rocks (or pyrolite), have been proposed. Geophysical evidence for subducted lithosphere deep in the mantle has been interpreted in terms of efficient mixing, and thus homogenous Mg/Si across most of the mantle. However, previous models did not consider the effects of variable Mg/Si on the viscosity and mixing efficiency of lower-mantle rocks. Here, we use geodynamic models to show that large-scale heterogeneity associated with a 20-fold change in viscosity, such as due to the dominance of intrinsically strong (Mg, Fe)SiO3–bridgmanite in low-Mg/Si domains, is sufficient to prevent efficient mantle mixing, even on large scales. Models predict that intrinsically strong domains stabilize mantle convection patterns, and coherently persist at depths of about 1,000–2,200 km up to the present-day, separated by relatively narrow up-/downwelling conduits of pyrolitic material. The stable manifestation of such bridgmanite-enriched ancient mantle structures (BEAMS) may reconcile the geographical fixity of deep-rooted mantle upwelling centres, and geophysical changes in seismic-tomography patterns, radial viscosity, rising plumes and sinking slabs near 1,000 km depth. Moreover, these ancient structures may provide a reservoir to host primordial geochemical signatures

    Phase‐Field Modeling of Grain Boundary Premelting

    No full text

    A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: Implications for the origin of EM-1 (enriched mantle 1)

    No full text
    We present new He-Sr-Nd-Pb-Os isotopic compositions and major and trace-element concentrations for ten subaerially-erupted lavas and one seamount lava associated with the Pitcairn hotspot. The most geochemically-enriched lavas at the Pitcairn hotspot have signatures that are consistent with recycled sediments derived from upper continental crust. Pitcairn lavas have elevated Ti, which also supports the presence of a mafic protolith in the Pitcairn mantle. A subset of Pitcairn seamount samples, including the seamount sample presented here, are tholeiitic. Tholeiitic lavas are uncommon at ocean hotspots located far from mid-ocean ridges. Like tholeiites that erupted in Hawaii, the presence of tholeiites in the Pitcairn magmatic suite can be explained by melting a silica-saturated recycled mafic component in the Pitcairn mantle source. We also present the highest ^3He/^4He ratio (12.6 Ra, ratio to atmosphere) from the Pitcairn hotspot. This sample anchors the high ^(206)Pb/^(204)Pb portion of the Pitcairn array and provides evidence for a plume component in the Pitcairn mantle. In contrast, Pitcairn lavas that have the lowest ^(206)Pb/^(204)Pb are the most geochemically enriched, and have the highest ^(87)Sr/^(86)Sr and lowest ^(143)Nd/^(144)Nd in the Pitcairn suite; these EM-1 end-member lavas have MORB-like ^3He/^4He (~ 8 Ra, ratio to atmosphere). Recycled oceanic crust and sediment suggested to be in the Pitcairn EM-1 mantle are expected to have low ^3He/^4He (< 0.1 Ra). Therefore, the higher, MORB-like ^3He/^4He in Pitcairn EM-1 lavas is paradoxical, but might be explained by diffusive exchange of helium, but not the heavy radiogenic isotopes, with the ambient mantle over billion-year timescales
    corecore