330 research outputs found

    86 GHz Very Long Baseline Polarimetry of 3C273 and 3C279 with the Coordinated Millimeter VLBI Array

    Get PDF
    86 GHz Very Long Baseline Polarimetry probes magnetic field structures within the cores of Active Galactic Nuclei at higher angular resolutions and a spectral octave higher than previously achievable. Observations of 3C273 and 3C279 taken in April 2000 with the Coordinated Millimeter VLBI Array have resulted in the first total intensity (Stokes I) and linear polarization VLBI images reported of any source at 86 GHz. These results reveal the 86 GHz electric vector position angles within the jets of 3C273 and 3C279 to be orthogonal to each other, and the core of 3C273 to be unpolarized. If this lack of polarization is due to Faraday depolarization alone, the dispersion in rotation measure is >=90000 rad/m^2 for the core of 3C273.Comment: AASTeX v5.02; 10 pages; 4 figures; accepted for publication in the Astrophysical Journal Letter

    Inconsistency in 9 mm bullets : correlation of jacket thickness to post-impact geometry measured with non-destructive X-ray computed tomography

    Get PDF
    Fundamental to any ballistic armour standard is the reference projectile to be defeated. Typically, for certification purposes, a consistent and symmetrical bullet geometry is assumed, however variations in bullet jacket dimensions can have far reaching consequences. Traditionally, characteristics and internal dimensions have been analysed by physically sectioning bullets – an approach which is of restricted scope and which precludes subsequent ballistic assessment. The use of a non-destructive X-ray computed tomography (CT) method has been demonstrated and validated Kumar et al., 2011); the authors now apply this technique to correlate bullet impact response with jacket thickness variations. A set of 20 bullets (9 mm DM11) were selected for comparison and an image-based analysis method was employed to map jacket thickness and determine the centre of gravity of each specimen. Both intra- and inter-bullet variations were investigated, with thickness variations of the order of 200 um commonly found along the length of all bullets and angular variations of up to 50 um in some. The bullets were subsequently impacted against a rigid flat plate under controlled conditions (observed on a high-speed video camera) and the resulting deformed projectiles were re-analysed. The results of the experiments demonstrate a marked difference in ballistic performance between bullets from different manufacturers and an asymmetric thinning of the jacket is observed in regions of pre-impact weakness. The conclusions are relevant for future soft armour standards and provide important quantitative data for numerical model correlation and development. The implications of the findings of the work on the reliability and repeatability of the industry standard V50 ballistic test are also discussed

    Just noticeable gamma differences and acceptability of sRGB images displayed on a CRT monitor

    Get PDF
    The standard RGB colour space (sRGB) has been proposed as a means for obtaining accurate reproduction of colour and tone for images displayed across the Internet, provided that they are viewed under the reference display and viewing conditions defined in the standard. It has been found, however, that typical display and viewing conditions when accessing online images vary and therefore deviate from the reference sRGB conditions. One of the parameters that may affect the perceived quality of online images is the gamma setting of the display. In this work psychophysical experiments were conducted to determine the imperceptibility and acceptability of gamma differences of sRGB images when they are viewed on cathode ray tube displays. These experiments were carried out under both controlled and uncontrolled display and viewing conditions. The results of these experiments are presented and discussed, including the estimated points of subjective equality and the just noticeable difference of gamma values

    Effect of Plasma Composition on the Interpretation of Faraday Rotation

    Full text link
    Faraday rotation (FR) is widely used to infer the orientation and strength of magnetic fields in astrophysical plasmas. Although the absence of electron-positron pairs is a plausible assumption in many astrophysical environments, the magnetospheres of pulsars and black holes and their associated jets may involve a significant pair plasma fraction. This motivates being mindful of the effect of positrons on FR. Here we derive and interpret exact expressions of FR for a neutral plasma of arbitrary composition. We focus on electron-ion-positron plasmas in which charge neutrality is maintained by an arbitrary combination of ions and positrons. Because a pure electron-positron plasma has zero FR, the greater the fraction of positrons the higher the field strength required to account for the same FR. We first obtain general formulae and then specifically consider parameters relevant to active galctic nuclei (AGN) jets to illustrate the significant differences in field strengths that FR measurements from radio frequency measurements. Complementarily, using galaxy cluster core plasmas as examples, we discuss how plasma composition can be constrained if independent measurements of the field strength and number density are available and combined with FR.Comment: Submitted to MNRA

    Microbial processing and production of aquatic fluorescent organic matter in a model freshwater system

    Get PDF
    © 2018 by the authors. Organic matter (OM) has an essential biogeochemical influence along the hydrological continuum and within aquatic ecosystems. Organic matter derived via microbial processes was investigated within a range of model freshwater samples over a 10-day period. For this, excitation-emission matrix (EEM) fluorescence spectroscopy in combination with parallel factor (PARAFAC) analysis was employed. This research shows the origin and processing of both protein-like and humic-like fluorescence within environmental and synthetic samples over the sampling period. The microbial origin of Peak T fluorescence is demonstrated within both synthetic samples and in environmental samples. Using a range of incubation temperatures provides evidence for the microbial metabolic origin of Peak T fluorescence. From temporally resolved experiments, evidence is provided that Peak T fluorescence is an indication of metabolic activity at the microbial community level and not a proxy for bacterial enumeration. This data also reveals that humic-like fluorescence can be microbially derived in situ and is not solely of terrestrial origin, likely to result from the upregulation of cellular processes prior to cell multiplication. This work provides evidence that freshwater microbes can engineer fluorescent OM, demonstrating that microbial communities not only process, but also transform, fluorescent organic matter

    Faraday rotation and polarization gradients in the jet of 3C~120: Interaction with the external medium and a helical magnetic field?

    Full text link
    We present a sequence of 12 monthly polarimetric 15, 22, and 43 GHz VLBA observations of the radio galaxy 3C 120 revealing a systematic presence of gradients in Faraday rotation and degree of polarization across and along the jet. The degree of polarization increases with distance from the core and toward the jet edges, and has an asymmetric profile in which the northern side of the jet is more highly polarized. The Faraday rotation measure is also stratified across the jet width, with larger values for the southern side. We find a localized region of high Faraday rotation measure superposed on this structure between approximately 3 and 4 mas from the core, with a peak of about 6000 rad/m^2. Interaction of the jet with the external medium or a cloud would explain the confined region of enhanced Faraday rotation, as well as the stratification in degree of polarization and the flaring of superluminal knots when crossing this region. The data are also consistent with a helical field in a two-fluid jet model, consisting of an inner, emitting jet and a sheath containing nonrelativistic electrons. However, this helical magnetic field model cannot by itself explain the localized region of enhanced Faraday rotation. The polarization electric vectors, predominantly perpendicular to the jet axis once corrected for Faraday rotation, require a dominant component parallel to the jet axis (in the frame of the emitting plasma) for the magnetic field in the emitting region.Comment: Accepted for publication in ApJ Letters. 4 pages (including 5 figures

    Faraday Rotation Measure Gradients from a Helical Magnetic Field in 3C 273

    Full text link
    Using high frequency (12-22 GHz) VLBA observations we confirm the existence of a Faraday rotation measure gradient of ~ 500 rad/m^2/mas transverse to the jet axis in the quasar 3C 273. The gradient is seen in two epochs spaced roughly six months apart. This stable transverse rotation measure gradient is expected if a helical magnetic field wraps around the jet. The overall order to the magnetic field in the inner projected 40 parsecs is consistent with a helical field. However, we find an unexpected increase in fractional polarization along the edges of the source, contrary to expectations. This high fractional polarization rules out internal Faraday rotation, but is not readily explained by a helical field. After correcting for the rotation measure, the intrinsic magnetic field direction in the jet of 3C 273 changes from parallel to nearly perpendicular to the projected jet motion at two locations. If a helical magnetic field causes the observed rotation measure gradient then the synchrotron emitting electrons must be separate from the helical field region. The presence or absence of transverse rotation measure gradients in other sources is also discussed.Comment: Accepted to ApJ Letters; 11 pages, 4 figures (1 color figure

    FULL COMMUNICATION Consumption of Dried Apple Peel Powder Increases Joint Function and Range of Motion

    Get PDF
    ABSTRACT The goal for this study was to evaluate the effects of consumption of dried apple peel powder (DAPP) on joint function and range of motion (ROM). Additional in vitro and clinical testing was performed to suggest specific mechanisms of action. An open-label clinical pilot study involved 12 healthy people with moderate loss of joint ROM and associated chronic pain. The subjects consumed 4.25 g DAPP daily for 12 weeks, with evaluations at baseline, 2, 4, 8, and 12 weeks. ROM was evaluated at each visit using dual digital inclinometry. Pain scores were collected using Visual Analogue Scales. Blood draws enabled testing of serum antioxidant protective capacity using the cellular antioxidant protection (CAP-e) bioassay. Additional in vitro testing involved testing of cyclooxygenase-2 (COX-2) and lipoxygenase inhibition, cellular antioxidant protection by the CAP-e bioassay, and formation of reactive oxygen species (ROS) by polymorphonuclear (PMN) cells by flow cytometry. Twelve weeks of consumption of DAPP was associated with improved ROM. DAPP provided antioxidants that were available to enter into and protect cells from oxidative damage in vitro, and consumption of DAPP for 12 weeks was associated with a statistically significant improvement in serum antioxidant protective status. DAPP inhibited both COX-2 and lipoxygenase enzymes, and pretreatment of inflammatory PMN cells with DAPP before inflammatory stimulus resulted in reduced ROS formation. This suggests multifaceted anti-inflammatory properties of DAPP. Consumption of DAPP was associated with improved joint function and improved serum antioxidant protection status. The observed pain reduction may be associated with the improved antioxidant status and linked to the apple polyphenols' anti-inflammatory effects

    Faraday rotation in the MOJAVE blazars: 3C 273 a case study

    Full text link
    Radio polarimetric observations of Active Galactic Nuclei can reveal the magnetic field structure in the parsec-scale jets of these sources. We have observed the gamma-ray blazar 3C 273 as part of our multi-frequency survey with the Very Long Baseline Array to study Faraday rotation in a large sample of jets. Our observations re-confirm the transverse rotation measure gradient in 3C 273. For the first time the gradient is seen to cross zero which is further indication for a helical magnetic field and spine-sheath structure in the jet. We believe the difference to previous epochs is due to a different part of the jet being illuminated in our observations.Comment: 6 pages, 3 figures. To appear in the proceedings of "Beamed and Unbeamed Gamma-rays from Galaxies", held in Muonio, Finland, April 11-15, 2011. Journal of Physics: Conference Serie
    • …
    corecore