3,265 research outputs found
Universal Features of the Time Evolution of Evanescent Modes in a Left-Handed Perfect Lens
The time evolution of evanescent modes in Pendry's perfect lens proposal for
ideally lossless and homogeneous, left-handed materials is analyzed. We show
that time development of sub-wavelength resolution exhibits universal features,
independent of model details. This is due to the unavoidable near-degeneracy of
surface electromagnetic modes in the deep sub-wavelength region. By means of a
mechanical analog, it is shown that an intrinsic time scale (missed in
stationary studies) has to be associated with any desired lateral resolution. A
time-dependent cut-off length emerges, removing the problem of divergences
claimed to invalidate Pendry's proposal.Comment: 4 pages, 3 figures, title slightly changed, reference added, minor
correction
Plasmons and near-field amplification in double-layer graphene
We study the optical properties of double-layer graphene for linearly
polarized evanescent modes and discuss the in-phase and out-of-phase plasmon
modes for both, longitudinal and transverse polarization. We find a energy for
which reflection is zero, leading to exponentially amplified transmitted modes
similar to what happens in left-handed materials. For layers with equal
densities cm, we find a typical layer separation of
m to detect this amplification for transverse polarization
which may serve as an indirect observation of transverse plasmons. When the two
graphene layers lie on different chemical potentials, the exponential
amplification either follows the in-phase or out-of-phase plasmon mode
depending on the order of the low- and high-density layer. This opens up the
possibility of a tunable near-field amplifier or switch.Comment: 9 pages, 8 figure
Plasmonics in topological insulators: Spin-charge separation, the influence of the inversion layer, and phonon-plasmon coupling
We demonstrate via three examples that topological insulators (TI) offer a
new platform for plasmonics. First, we show that the collective excitations of
a thin slab of a TI display spin-charge separation. This gives rise to purely
charge-like optical and purely spin-like acoustic plasmons, respectively.
Second, we argue that the depletion layer mixes Dirac and Schr\"odinger
electrons which can lead to novel features such as high modulation depths and
interband plasmons. The analysis is based on an extension of the usual formula
for optical plasmons that depends on the slab width and on the dielectric
constant of the TI. Third, we discuss the coupling of the TI surface phonons to
the plasmons and find strong hybridisation especially for samples with large
slab widths.Comment: 37 pages, 7 figure
Spin-charge separation of plasmonic excitations in thin topological insulators
We discuss plasmonic excitations in a thin slab of a topological insulators.
In the limit of no hybridization of the surface states and same electronic
density of the two layers, the electrostatic coupling between the top and
bottom layers leads to optical and acoustic plasmons which are purely charge
and spin collective oscillations. We then argue that a recent experiment on the
plasmonic excitations of Bi2Se3 [Di Pietro et al, Nat. Nanotechnol. 8, 556
(2013)] must be explained by including the charge response of the
two-dimensional electron gas of the depletion layer underneath the two
surfaces. We also present an analytic formula to fit their data.Comment: 7 pages, 5 figure
Extraordinary absorption of decorated undoped graphene
We theoretically study absorption by an undoped graphene layer decorated with
arrays of small particles. We discuss periodic and random arrays within a
common formalism, which predicts a maximum absorption of for suspended
graphene in both cases. The limits of weak and strong scatterers are
investigated and an unusual dependence on particle-graphene separation is found
and explained in terms of the effective number of contributing evanescent
diffraction orders of the array. Our results can be important to boost
absorption by single layer graphene due to its simple setup with potential
applications to light harvesting and photodetection based on energy (F\"orster)
rather than charge transfer.Comment: 5 pages, 3 figure
Measurable lattice effects on the charge and magnetic response in graphene
The simplest tight-binding model is used to study lattice effects on two properties of doped graphene: (i) magnetic orbital susceptibility and (ii) regular Friedel oscillations, both suppressed in the usual Dirac cone approximation. (i) An exact expression for the tight-binding magnetic susceptibility is obtained, leading to orbital paramagnetism in graphene for a wide range of doping levels which is relevant when compared with other contributions. (ii) Friedel oscillations in the coarse-grained charge response are considered numerically and analytically and an explicit expression for the response to lowest order in lattice effects is presented, showing the restoration of regular 2d behavior, but with strong sixfold anisotropyThis work has been supported by FCT under Grant No. PTDC/ FIS/101434/2008 and MIC under Grant No. FIS2010- 21883-C02-0
Thermal van der Waals Interaction between Graphene Layers
The van de Waals interaction between two graphene sheets is studied at finite
temperatures. Graphene's thermal length controls
the force versus distance as a crossover from the zero temperature
results for , to a linear-in-temperature, universal regime for
. The large separation regime is shown to be a consequence of the
classical behavior of graphene's plasmons at finite temperature. Retardation
effects are largely irrelevant, both in the zero and finite temperature
regimes. Thermal effects should be noticeable in the van de Waals interaction
already for distances of tens of nanometers at room temperature.Comment: enlarged version, 9 pages, 4 figures, updated reference
- …